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Abstract

This paper studies the effect of the timing gaming by the agent in

incentive contracts. It is well known that the agent has incentives to

manipulate the timing of sales reports when the principal uses a nonlinear

incentive contract such as a quota-based contract. However, it is not

known how the agent’s gaming activity affects the principal’s profit.

We study a dynamic moral hazard model in which the agent can delay

the timing of reporting. First, we compare linear contracts and quota-

based contracts to examine how the timing gaming relates the optimal

form of contracts. We show that when the agent’s effort cost is rela-

tively low, the principal prefers quota-based contracts to linear contracts.

Second, we consider the non-gaming situation in which the agent cannot

manipulate the timing of reporting to examine how the agent’s gaming

activity affects the principal’s profit. We show that when the agent’s effort

cost is relatively high, gaming activities increase the principal’s profit.

Keywords: Quota-based contract; Gaming; Moral-hazard
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1 Introduction

A quota-based contract is one of the most important forms of incentive con-

tracts, especially for salespeople.1 One reason for its popularity is that it can

provide strong incentives to salespeople. Previous theoretical research on static

moral hazard models also shows that a quota-based contract is the most efficient

contract form from a firm’s perspective, especially when a salesperson’s liability

is limited.2

Furthermore, it is well known that if an employment relationship between

a firm and a salesperson exists over a long term (multi-period), quota-based

contracts provide incentives for the salesperson to manipulate the timing of

transactions to increase their wage (“timing gaming”).3 However, it is not clear

how timing gaming affects a firm’s objectives. In this study, I examine the effect

of timing gaming on a theoretical framework.

Several empirical and theoretical studies have examined the effects of em-

ployees’ gaming activities. For example, Larkin (2014) suggests that gaming is

costly to firms. The author focuses on situations in which employees manipulate

prices rather than the timing of sales reports. He uses a proprietary database

of deals for a leading enterprise software vender and demonstrates that timing

gaming by the vender’s salesperson costs it 6-8% of revenue.

An example of a theoretical study is Au and Kawai (2019), who investigate

the optimality of quota-based contracts. They examine a two-period moral

hazard model in which the agent can carry over the first period’s sales to the

second round. Their main result is that if the principal does not have contractual

commitment power (i.e., there is a possibility of renegotiation), a quota-based

contract can be optimal for the principal.

To complement Au and Kawai (2019), we investigate a long-term employ-

ment relationship by considering an infinite-period moral hazard model wherein

a risk-neutral principal (female) employs a risk-neutral agent (male) to sell her

1see Joseph and Kalwani (1998).
2see Kim (1997) and Oyer (2000).
3see Oyer (1998).
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products or services. Every period consists of two rounds, and the agent exerts

an effort to sell the product to one customer in each round.

The principal cannot observe not only the agent’s effort level, but also

whether the product has been sold or not. Instead, the principal can observe

and verify the sales report, which is submitted by the agent at the end of each

round. We assume that the agent can strategically manipulate the timing of

sales reports. Specifically, the agent can report the current round’s sales at the

end of next round, that is, the agent can carry over the sales to the next round.

This study aims to answer two questions: (i) If the agent can manipulate

the timing of sales reports, what form of contract is optimal for the principal?

(ii) How does the gaming activity affect the principal’s profit?

To answer the first question, we compare linear and quota-based contracts,

which are the most common forms of sales force compensation. Linear contracts

reward each sales equally, whereas quota-based contracts do not. Therefore, if

the principal offers a linear contract, the agent has no incentive to manipulate

the timing of reporting because it does not change his total wage. Meanwhile,

a quota-based contract may incentivize the agent to game the timing because

of nonlinearity of the compensation form. Specifically, the agent may have

incentives to delay the sales reports when, at the beginning of the second round,

(a) he has already made a quota, or (b) he cannot make a quota even if he could

sell the product in that round.

We show that quota-based contracts are more profitable for the principal

than linear contracts if and only if the cost per unit effort is relatively low. The

intuition behind this result is as follows. Quota-based contracts can provide

strong incentives to the agent, but the strength of these incentives depends on

the achievement of quotas. Specifically, the agent exerts a high effort when he

is likely to achieve a quota, but a low effort when he is not.

If marginal effort costs are not constant (i.e., the agent’s cost function is

nonlinear), these variations in the incentive strength generates inefficiency in

effort costs. Furthermore, this inefficiency increases with the cost per unit effort.

As a result, the negative effect of quota-based contract is more significant than
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the positive effect of that when the cost per unit effort is high.

Because linear contracts do not generate such inefficiency, they are more

profitable for the principal than quota-based contracts when the cost per unit

effort is high.

To answer the second question, we consider a situation in which the agent

cannot game the timing of the sales reports (a non-gaming situation) and com-

pare this and the gaming situation from the perspective of the principal’s profits.

We show that timing gaming by the agent is profitable for the principal if

and only if the cost per unit effort is relatively high. The logic behind this result

is similar to that of the first question. In the non-gaming situation, quota-based

contracts can provide stronger incentives than in the gaming situation, but

such strong incentives also increase the variability in effort levels. Therefore,

an increase in the cost per unit effort decreases the principal’s profit in the

non-gaming situation more sharply than in the gaming situation.

The rest of this paper is organized as follows. The next section describes our

model; section 3 compares linear and quota-based contracts; section 4 compares

gaming situation and non-gaming situation to analyze the effect of the timing

gaming; section 5, we discuss our main results and potential extensions. The

proofs of the lemmas and the results are provided in the appendices.

2 Model

We consider an infinite-period moral hazard model in which a risk-neutral prin-

cipal (female) hires a risk-neutral agent (male) who is protected by limited

liability (i.e., wages must be positive) to sell her products or services (hereafter

“output”). They live in period 1, 2, . . . until infinity and have a common dis-

count factor δ ∈ [0, 1). Each period consists of two rounds (first round and

second round). In each round, the agent exerts costly effort to sell the output

to one customer. His effort level e(∈ [0, 1] ≡ E) is not observable and verifiable

for the principal. The cost of exerting effort is denoted by c(e) = ce2 where

c (∈ {0.01, 0.02, · · ·, 2.00}) is the cost per unit effort, which is commonly known.
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The agent’s effort in each round stochastically determines the sales y(∈

{0, 1} ≡ Y ) for that round. Specifically, the probability of a successful trans-

action equals the effort level in that round, that is, Prob(y = 1|e) = e. We

use t(= 1, 2, 3 · ··) and R(∈ {1(st), 2(nd)} ≡ R) to denote periods and rounds,

respectively, that is, the sales in the round R of the period t is denoted by yt,R.

We assume that the principal cannot observe either the agent’s effort level or

the sales. However, she can observe and verify the agent’s self-reports (denoted

by rt,R ∈ {0, 1} ≡ R). This allows her to design enforceable contracts wherein

payments are dependent on sales reports.

To examine the effect of the agent’s timing gaming, we consider a situation

wherein the agent can carry over sales from the current round to the next round

by underreporting. The agent is assumed to be able to carry over the sales for

one round only. Specifically, the constraint is given by θt,R ≤ rt,R ≤ yt,R + θt,R.

θt,R(∈ {0, 1} ≡ Θ) denotes carryover at the end of round R in period t, where

it is defined as

θt,1 =

 yt−1,2 + θt−1,2 − rt−1,2 if θt−1,2 ≤ rt−1,2
yt−1,2 otherwise,

θt,2 =

 yt,1 + θt,1 − rt,1 if θt,1 ≤ rt,1
yt,1 otherwise.

In our model, a contract specifies the wage for each period (denoted by

wt). We impose several restrictions on contracts. First, the principal offers a

contract at the beginning of the relationship and cannot change it afterwards

(i.e., there is no possibility of renegotiation). Second, the wage for each period

depends only on the sum of the sales reports for that period (hereafter referred

to as the total sales report), but not on the history of sales reports, that is,
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wage in period t depends on (rt,1 + rt,2). With these two assumptions, the

wage scheme does not depend on the period; thus, the wage for period t can be

expressed as w(rt,1, rt,2). Finally, we assume that the agent’s liability is limited

(i.e., w(rt,1, rt,2) ≥ 0 for all rt,1, rt,2 ∈ {0, 1}).

The timing of this game is as follows.

1. The principal offers a contract w(r1, r2) and the agent chooses to accept

or reject it. If the agent rejects the contract, the game ends and both the

principal and the agent earn the outside option (= 0).

2. If the agent accepts the contract, he chooses effort level e1,1 ∈ [0, 1] for

the first round of period 1.

3. The output y1,1 is realized, and it is observable for the agent but not for

the principal.

4. The agent submits the sales report r1,1(≥ 0) and carries over θ1,1(= y1,1−

r1,1) to the second round of period 1.

5. The agent chooses e1,2 ∈ [0, 1].

6. The output of second round y1,2 is realized, and it is observable for the

agent but not for the principal.

7. The agent submits a sales report r1,2(≥ θ1,1) and carries over θ1,2(= y1,2+

θ1,1 − r1,2) to the first round of period 2.

8. The principal pays the agent based on his total report in period 1.

9. Step 2-7 are repeated for period 2, 3,· · ·.
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We begin by considering the problem of the agent. The agent is assumed to

maximize the expected total payoff, where period t’s ex-post payoff is given by

the wage minus the total effort cost in that period (i.e., wt(rt,1, rt,2)− (ce2t,1 +

ce2t,2)).

The agent’s control variables in period t are et,1, et,2, rt,1 and rt,2. Thus,

his problem is to choose a policy function for both effort level and sales reports

(effort policy and report policy, respectively).

The effort policy consists of the policy for the first and second rounds’ efforts,

which are functions from Θ to E and Θ × R to E, respectively. Meanwhile,

the report policy consists of the policy for the sales reports of the first and

second rounds, which are functions from Θ × Y to R and Θ × R × Y to R,

respectively. Using the dynamic programming framework, the optimal effort

and report policies satisfy the following Bellman equations.

V1(θ1)

= max
e1(θ1)

r1(θ1,1),r1(θ1,0)

−c(e1(θ1)) + e1(θ1)V2(σ1(θ1, r1(θ1, 1), 1))

+ {1− e1(θ1)}V2(σ1(θ1, r1(θ1, 0), 0))
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V2(θ2, r1) =

max
e2(θ2,r1)
r2(θ2,r1,1)
r2(θ2,r1,0)

−c(e2(θ2, r1))

+ e2(θ2, r1)[w(r1, r2(θ2, r1, 1)) + δV1(σ2(θ2, r2(θ2, r1, 1), 1))]

+ {1− e2(θ2, r1)}[w(r1, r2(θ2, r1, 0)) + δV1(σ2(θ2, r2(θ2, r1, 0), 0))],

where σ1 and σ2 are transition functions from Θ ×R × Y to Θ ×R and from

Θ×R × Y to Θ, respectively.

Meanwhile, the principal’s problem is to design the wage scheme to max-

imize her total expected profit, subject to incentive compatibility constraints

for efforts and reports and limited liability constraint.4 The principal’s ex-post

profit in period t is defined as the total sales reports minus the wage in that pe-

riod, that is, rt,1 + rt,2−w(rt,1, rt,2). Using a dynamic programing, the optimal

wage scheme satisfies the following Bellman equations:

Π1(θ1) =e∗1(θ1)r∗1(θ1, 1) + {1− e∗1(θ1)}r∗1(θ1, 1)

+ e∗1(θ1)Π2(σ1(θ1, r
∗
1(θ1, 1), 1)) + {1− e∗1(θ1)}Π2(σ1(θ1, r

∗
1(θ1, 0), 0))

Π2(θ2, r1) =

max
w(r1,r2)

e∗2(θ2, r1)r∗2(θ1, 1) + {1− e∗1(θ1)}r∗1(θ1, 1)

+ e∗2(θ2, r1)[w(r1, r
∗
2(θ2, r1, 1)) + δΠ1(σ2(θ2, r

∗
2(θ2, r1, 1), 1))]

+ {1− e∗2(θ2, r1)}[w(r1, r
∗
2(θ2, r1, 0)) + δΠ1(σ2(θ2, r

∗
2(θ2, r1, 0), 0))],

where e∗ and r∗ are the optimal effort and report policies under the contract

offered by the principal, respectively.

We focus on three types of contracts: linear, high-quota, and low-quota.

Definition 1. A contract is linear if wage scheme is

w(r1, r2, b) = b(r1 + r2)

4Because we assume that the agent’s outside option is 0 and the minimum wage is 0, he

always accepts the principal’s offer. That is, we can drop the participation constraint without

loss of generality.
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Definition 2. A contract is low-quota if wage scheme is

w(r1, r2, b) =

 b if r1 + r2 ≥ 1

0 otherwise

Definition 3. A contract is high-quota if wage scheme is

w(r1, r2, b) =

 b if r1 + r2 = 2

0 otherwise

Under a linear contract, the agent receives a constant amount for each unit

of sales report. Thus, this type of contract provides linear incentives to the

agent. However, under a low-quota contract, the agent receives b if and only if

the total sales report in that period is higher than 1; thus, low-quota contracts

provide nonlinear incentives to the agent because marginal wages from reporting

additional sales are not constant. Therefore, the agent may have an incentive to

manipulate the timing of sales reporting. Specifically, he has incentives to delay

the reports when he cannot make quotas even though he reports true sales.

Finally, under a high-quota contract, the agent receives b if and only if the total

sales report in that period is 2. This type also provides nonlinear incentives to

the agent, and thus, he has incentives to manipulate the timing in this case too.

3 Linear vs Quota

In this section, we compare the three types of contracts with respect to the prin-

cipal’s profit. We examine which types efficiently incentivize the agent when he

can manipulate the timing of reports (“gaming situation”). We derive the nec-

essary and sufficient conditions for each contract to be optimal for the principal.
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3.1 Linear contracts vs Low-quota contracts

First, we characterize the optimal linear contract and derive the principal’s

profit. To do this, we characterize the agent’s optimal effort and report policies.

The following lemma characterizes the optimal effort and report policies in a

linear contract.

Lemma 1. Assume the principal chooses a linear contract.

(i) The optimal report policy (rP1 , r
P
2 ) satisfies

rP1 (θ1, y1) = y1, r
P
2 (θ2, r1, y2) = y2

for all θ1, θ2 ∈ Θ, y1, y2 ∈ Y and r1 ∈ R.

(ii) The optimal effort policy (eP1 , e
P
2 ) satisfies

eP1 (θ1) = eP2 (θ2, r1) = min{ b
2c
, 1}

for all θ1, θ2 ∈ Θ and r1 ∈ R.

Proof. See Appendix.

(i) in Lemma 1 implies that under a linear contract, the agent always reports

true sales in every round (i.e., rt,R = yt,R for all t and R). This is because the

agent always receives b per unit of sales, so he has no incentive to manipulate

the timing of the sales reporting. (ii) in lemma 1 implies that the agent exerts

the same efforts in every round (i.e., et,R = b
2c or 1).

Given lemma 1, the principal’s problem becomes static. Hence, her problem

is expressed as

max
b
E[rP1 + rP2 − wP (rP1 , r

P
2 , b)]

= max
b

2(1− eP ).

Solving this problem, we can characterize the optimal linear contract and derive

the principal’s profit.

Lemma 2. Assume the principal chooses a linear contract.
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(i) The optimal linear contract wP (r1, r2, b
P ) satisfies

bP = min{1

2
, 2c}.

Then, the agent’s optimal effort level is given by

eP =

 1 if c ≥ 1
4

1
4c otherwise

(ii) The principal’s expected profit under the optimal linear contract ΠP is

given by

ΠP = min{ 1

8c
, 1− 2c}

Proof. See Appendix.

Next, we characterize the optimal low-quota contract and derive the princi-

pal’s profit. For simplicity in the following analysis, we assume that both the

principal and the agent are sufficiently patient, that is, δ → 1. The follow-

ing lemma describes the agent’s optimal effort and report policies in low-quota

contracts. 5

Lemma 3. Assume the principal chooses a low-quota contract and δ → 1.

(i) The optimal report policy {rL1 , rL2 } satisfies

rL1 (θ1, y1) =

 1 if θ1 + y1 ≥ 1

0 otherwise

rL2 (θ2, r1, y2) =

 1 if θ2 = 1 or (θ2, r1, y2) = (0, 0, 1)

0 otherwise

(ii) The optimal effort policy {eL1 (0), eL1 (1), eL2 (0, 0), eL2 (0, 1), eL2 (1, 1)} is ex-

pressed as follows.

5There is another type of optimal policy apart from one characterized in this lemma. These

two types of policies are the same in the terms of expected level of effort and payment. That

is, the optimal low-quota contract is the same under these optimal policies. Hence, we focus

on only one these two. In Appendix A, we provide the characteristics of both optimal policies.
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Case 1: 2c ≤ b

eL1 (0) = 0, eL1 (1) = 0,

eL2 (0, 0) = 1, eL2 (0, 1) = 1, eL2 (1, 1) ∈ [0, 1]

or

eL1 (0) = 2−
√

2, eL1 (1) = 0,

eL2 (0, 0) = 1, eL2 (0, 1) =
√

2− 1, eL2 (1, 1) ∈ [0, 1].

Case 2: 2c > b

eL1 (0) : c2(eL1 (0))4 − 4c2(eL1 (0))3 + 4c2(eL1 (0))2 − 8c2eL1 (0) + 4bc− b2 = 0

eL1 (1) = 0, eL2 (0, 0) =
b

2c
, eL2 (1, 1) ∈ [0, 1]

eL2 (0, 1) = eL1 (0)− eL1 (0)

2

−1

2

√
−b(b− 4c)

c2
+ eL1 (0)(eL1 (0)((eL1 (0))2 − 2)− 8)

Proof. See Appendix.

(i) in lemma 3 means that the agent underreports at the end of the second

round when he reports 1 in the first round and successfully sells the output in

the second round. Given the optimal report policy rL, the state transitions are

shown in Figure 1.

(ii) in lemma 3 implies that eL2 (0, 0) ≥ eL1 (0) ≥ eL2 (0, 1) ≥ eL1 (1). The

agent has strong incentives to exert effort when he does not have a carryover,

especially for the second round.

Given lemma 3, the principal’s problem is to choose b so that it satisfies

following equations.

Π1(0) = eL1 (0) + eL1 (0)Π2(0, 1) + (1− eL1 (0))Π2(0, 0)

Π1(1) = 1 + eL1 (1)Π2(1, 1) + (1− eL1 (1))Π2(0, 1)
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Figure 1:

Π2(0, 0) = (1− b)eL2 (0, 0) + δΠ1(0)

Π2(0, 1) = −b+ δ{eL2 (0, 1)Π1(1) + (1− eL2 (0, 1))Π1(0)}

Π2(1, 1) = 1− b+ δ{eL2 (1, 1)Π1(1) + (1− eL2 (1, 1))Π1(0)}

When δ → 1, the problem can be expressed as the following maximization

problem:

max
b

[(1− b){eL1 (0)(1− eL2 (0, 0)) + eL2 (0, 0)}+ {(2− b)eL1 (0)eL1 (1)

− (1− b)(1− eL1 (0))1− eL1 (1))eL2 (0, 0)} − (1− b)eL1 (1){eL1 (0)

(1− eL2 (0, 0)) + eL2 (0, 0)}eL2 (1, 1)]/[1− (1− eL1 (0)− eL1 (1))eL2 (0, 0)

− eL1 (1)eL2 (1, 1)].

Denote the optimal low-quota contract and the bonus level in it as wL(rL1 , r
L
2 , b

L)

and bL, respectively. Furthermore, the principal’s expected profit under

wL(rL1 , r
L
2 , b

L) is denoted by ΠL.

We derive bL and ΠL by numerical calculation using “Mathematica”. The

following result shows the relationship between ΠP (characterized in lemma 2)

and ΠL.

Result 1. Assume δ → 1. For all b(≥ 0) and all c, ΠP > ΠL.

Proof. See Appendix.
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Figure 2:

Result 1 implies that linear contracts are more profitable for the principal

than low-quotas contracts for all b and c. The intuition behind this result is

as follows: Low-quota contracts do not provide strong incentives to the agent

because it is easy for him to make quotas. Meanwhile, this type of contract

induces the inefficiency in effort costs due to nonlinearity of compensation.

Linear contracts do not generate such inefficiency because the agent chooses

the same effort level in every round, although they do not provide strong in-

centives. As a result, the principal always prefers linear contracts to low-quota

contracts.

Furthermore, the difference between the principal’s profit in the optimal

linear contract and the optimal low-quota contract decreases as c increase (see

figure 2).
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3.2 Linear vs High-quota Contract

We have confirmed that the optimal linear contract is more profitable for the

principal than low-quota contracts. Now, we compare linear contracts and high-

quota contracts with respect to the principal’s profit. We begin by considering

the problem of the agent. The following lemma characterizes the optimal effort

and report policies under high-quota contracts.

Lemma 4. Assume δ → 1 and the principal chooses high-quota contracts.

(i) The optimal report policy (rH1 , r
H
2 ) satisfies

rH1 (θ1, y1) =

 1 if θ1 + y1 ≥ 1

0 otherwise

rH2 (θ2, r1, y2) =

 1 if θ2 = 1 or (θ2, r1, y2) = (0, 1, 1)

0 otherwise

(ii) The optimal effort policy {eH1 (0), eH1 (1), eH2 (0, 0), eH2 (0, 1), eH2 (1, 1)} are ex-

pressed as follows.

Case 1: b ≤ 2c

eH1 (0) =
b3 − 2b2c+ 4c(

√
b4 − 6b3c+ 8b2c2 + 16c4 − 4c2

4(b− 2c)2c
,

eH1 (1) = b3 − 6b2c+ 8bc2 + 16c3 − 4c
√
b4 − 6b3c+ 8b2c2 + 16d4,

eH2 (0, 0) = eH2 (1, 1) =

√
b4 − 6b3c+ 8b2c2 + 16c4 − 4c2

c(4c− b)
,

eH2 (0, 1) =
b

2c

Case 2: 2c < b ≤ 4c

eH1 (0) =
b3 − b2c− 16c3 − 4

√
2(bc)

3
2 + 16

√
2
√
bc5

4(b− 2c)2c
,

eH1 (1) =
1

4(b− 2c)2c
(b3 − 6b2c+ 8bc2 + 16c3 + 4

√
2(bc)

3
2 − 16

√
2
√
bc5),

eH2 (0, 0) = eH2 (1, 1) =

√
2b

3
2√
c

+ 4c− 4
√

2
√
bc

2b− 4c
,
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Figure 3:

eH2 (0, 1) = 1

Case 3: b > 4c

eH1 (0) = 1, eH1 (1) ∈ [0, 1],

eH2 (0, 0) ∈ [0, 1], eH2 (0, 1) = 1, eH2 (1, 1) ∈ [0, 1].

Proof. See Appendix.

(i) in lemma 4 implies that there are two cases in which the agent carries over

sales (see figure 3). The first case is that the agent can make quotas without

reporting the second round’s sales. In the second case, the agent cannot make

quotas even if he reports the sales for that round. Given the optimal report

policy (rH), the state transitions are shown in Figure 3. (ii) in lemma 4 implies

that eH2 (0, 1) ≥ eH1 (1) ≥ eH2 (0, 0) ≥ eH1 (0). Figure plots effort levels of each

state.

Given lemma 4, the principal’s problem is to choose b so that it satisfies

following equations:

Π1(0) = eH1 (0) + eH1 (0)Π2(0, 1) + (1− eH1 (0))Π2(0, 0)

Π1(1) = 1 + eH1 (1)Π2(1, 1) + (1− eH1 (1))Π2(0, 1)

Π2(0, 0) = δ{(1− eH2 (0, 1))Π1(0) + eH2 (0, 1)Π1(1)
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Π2(0, 1) = (1− b)eH2 (0, 1) + δ{Π1(0)}

Π2(1, 1) = 1− b+ δ{(1− eH2 (1, 1))Π1(0) + eH2 (1, 1)Π1(1)}

When δ → 1, her problem can be expressed as the following maximization

problem.

max
b

[(1− b){eH1 (0)(1 + eH2 (0, 1)− beH2 (0, 1))+

(1− eH1 (0))eH2 (0, 0)(1 + (1− b)eH1 (1)(1− eH2 (0, 1)) + (1− b)eH2 (0, 1)+

eH1 (0)eH1 (1)((b− 1)eH2 (0, 1))eH2 (1, 1)− 1)

/(1 + eH2 (0, 0)− eH1 (0)eH2 (0, 0)− eH1 (1)eH2 (1, 1)).

Denote the optimal high-quota contract and the bonus level in it as wH(rH1 , r
H
2 , b

H)

and bH , respectively. Furthermore, the principal’s expected profit under

wH(rH1 , r
H
2 , b

H) is denoted by ΠH .

Similar to result 2, we derive bH and ΠH using numerical calculation. The

following result shows the relationship between ΠP and ΠH .

Result 2. Assume δ → 1. If c < (>)1.47, then ΠHighQ > (<)ΠLinear.

Result 2 implies that when c is low (high), the high-quota contract (the linear

contract) is more profitable for the principal than the linear contract (the high-

quota contract). Figure 4 shows the comparison between the optimal linear

contract and the optimal high-quota contract with respect to the principal’s

profit. The logic behind this result is as follows. The high-quota contract

provides stronger incentives than the linear contract, but induce the inefficiency

in effort cost. Furthermore, an increase in c increases this inefficiency. To

see this, we compare these two contracts with respect to the equilibrium level

of expected total effort and expected payment. Figure 5 and Figure 6 show

the comparison with respect to expected total effort per period and expected

payment per period, respectively. These two figures imply that when c is high,

the optimal linear contract can incentivize the agent more efficiently than the

optimal high-quota contract. This is because the inefficiency in high-quota

contracts increases as c increases. That is, the strong incentives in high-quota
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Figure 4:

Figure 5: Figure 6:
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contracts becomes costlier to provide. Consequence, the principal prefers the

optimal high-quota contract to the optimal linear contract if c is high.

4 The Effect of Gaming

In this section, we examine the effect of gaming. To do this, we modify the

basic model to a new model wherein the agent cannot carryover the sales to

the next round. In the new model, the agent has to report the true sales in

each round, that is, rt,1 = yt,1 and rt,2 = yt,2 for all t. We begin by deriving

the agent’s optimal effort policy under low-quota contracts in this new situation

(non-gaming situation).

Lemma 5. Assume the agent cannot carry over the sales, and the principal

chooses low-quota contracts.

The optimal effort policy eL(NG) satisfies

{eL(NG)
1 (0), e

L(NG)
2 (1), e

L(NG)
2 (0)} =

 { b(b+4c)
8c2 , 0, b2c} if b

2c ≤ 1

{0, 0, 1} otherwise.

Proof. See Appendix.

The principal’s problem becomes static because the agent cannot manipulate

the timing of sales reports. In other words, the problem is to choose b to

maximize the expected profit for a period. Given lemma 5, it is expressed as

max
b
E[y1 − y2 − wL(NG)(y1, y2, b

L(NG))|eL(NG)]

= max
b

(1− b){eL(NG)
1 + (1− eL(NG)

1 )e
L(NG)
2 }

We denote ΠL(NG) as the principal’s profit per period under the optimal low-

quota contract in a non-gaming situation. The following result shows the com-

parison between ΠL and ΠL(NG) We denote the optimal high-quota contract

and the bonus level in it as wH(rH1 , r
H
2 , b

H) and bH , respectively. Furthermore,

the principal’s expected profit under wH(rH1 , r
H
2 , b

H) is denoted by ΠH .

Similar to result 2, we derive bH and ΠH using numerical calculation. The

following result shows the relationship between ΠP and ΠH .
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Figure 7:

Result 3. Assume δ → 1. For all c(> 0) and b(> 0), ΠL > ΠL(NG).

Proof. See Appendix.

Result 3 implies that the agent’s gaming activity is profitable for the prin-

cipal in a low-quota contract. The logic behind this result is as follows: In the

second round, when the quota has been achieved at the end of the first round,

the agent has no incentive to exert efforts in the non gaming situation, but he

does have incentives in the gaming situation. It follows that the inefficiency

in effort costs is large in the non-gaming situation. Consequently, low-quota

contracts incentivize the agent to be more efficient in the gaming situation.

Next, we examine the effect of gaming on high-quota contracts. The fol-

lowing lemma characterizes the agent’s optimal effort policy in a non-gaming

situation.

Lemma 6. Assume that the agent cannot carry over the sales, and the principal
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Figure 8:

chooses high-quota contracts. Then, the agent’s effort policy eH(NG) is

{eH(NG)
1 (0), e

H(NG)
2 (1), e

H(NG)
2 (0)} =


{ b

2

8c2 , 0,
b
2c} if b

2c ≤ 1

{ b−c2c , 0, 1} if b−c
2c < 1 ≤ b

2c .

{1, 0, 1} if 1 < b−c
2c .

Proof. See Appendix.

Given lemma 6, the principal’s problem is expressed as

max
b
E[y1 − y2 − wH(NG)(y1, y2, b

H(NG))|eH(NG)]

= max
b

e
H(NG)
1 + (2− b)eH(NG)

1 e
H(NG)
2 (1)

We denote ΠH(NG) as the principal’s profit per period in the optimal high-

quota contract under a non-gaming situation. The following result shows that

the relationship between ΠH and ΠH(NG)

Result 4. Assume δ → 1. If c > (<)0.49, then ΠH > (<)ΠH(NG).

Proof. See Appendix.
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Figure 9: Figure 10:

Result 4 implies that the agent’s gaming activity is profitable for the prin-

cipal when c is high. Figure 8 plots the principal’s profit under the optimal

high-quota contract in the gaming and non-gaming situations. This shows that,

as c increases, the optimal profit decrease more sharply in the non-gaming situ-

ation than the gaming situation. To analyze this further, we compare these two

situations with respect to expected efforts and expected payment.

The relationship between these two situation is similar to that between linear

and high-quota contracts in the gaming situation. High-quota contracts can

provide stronger incentives to the agent in the non-gaming situation because if

the quota is not achieved, all sales reports for that period will be useless, as

a result, the agent will exerts efforts to make his quota (Figure 9). However,

these strong incentives induce inefficient effort cost. Becase an increase in c

increases this inefficiency, incentives becomes costlier to provide (Figure 10).

Consequently, gaming activity is profitable for the principal when c is high.

5 Conclusion

This paper considered an infinite-period moral hazard model in which the agent

can underreport the sales in order to increase his wage. We first showed that

when the effort cost is relatively low, the principal prefers quota-based contracts

to linear contracts. This result implies that quota-based contract can be more

profitable than linear contracts even if the agent can manipulate the report
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timing.

In addition, we investigate the effect of timing gaming by considering the sit-

uation where the agent does not allow to manipulate the timing of sales reports.

Then, we showed that the agent’s gaming activities increases the principal’s

profit in quota-based contracts when the effort cost is relatively high.

However, our model needs improvement because we impose several strong

assumptions on the model. For example, we assume that wage contracts do

not change in the infinite repeated relationship and depend on the history of

sales, i.e., wage depends only on the current period’s sales. Therefore, these

assumptions need to be relaxed in order to obtain more general results.

Appendix A

In appendix A, we give proofs of lemma 1-6.

Proof of lemma 1

The optimal report policy:

Since linear contracts provide linear incentives to the agent, there is no in-

centive to carry over sales from the first round to the second round. There-

fore, he always reports honestly in linear contract. It means that rP1 (θ1, y1) =

y1, r
P
2 (θ2, r1, y2) = y2 for all θ1, θ2 ∈ Θ, y1, y2 ∈ Y and r1 ∈ R.

The optimal effort policy:

Given the optimal report rule (rP1 , r
P
2 ), the agent’s problem of choosing the level

of effort in each round becomes stationary. Specifically, his problem is expressed

as

max
e∈E

eb− ce2.

Solving above the agent’s problem, his optimal effort in both rounds (eP1 , e
P
2 )

are given by

eP1 = eP2 = min{1, b
2c
}

Proof of lemma 2

First, we derive the optimal bonus in linear contracts (denoted by bP ). Given
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the agent’s optimal policy for effort level and report ((eP1 , e
P
2 ) and (rP1 , r

P
2 )), the

principal’s profit maximization problem regarding b in every round is expressed

by

max
b

2(1− b)×min{1, b
2c
}

Solving this problem, we obtain

bP = min{1

2
, 2c}.

Second, we calculate the principal’s revenue for each round in the optimal linear

contract (denoted by ΠP ). Given the optimal effort policy (eP1 , e
P
2 ) and bonus

bP , ΠP can be expressed as

2(1− bP )×min{1, b
P

2c
}.

We can derive ΠP as follows.

Case 1 (c > 1
4)

Note that bP = 1
2 since 1

2 < 2c. Then,

ΠP = 2(1− 1

2
)× 1

4c
=

1

4c
.

Case 2 (c ≤ 1
4)

Note that bP = 2c since 1
2 ≥ 2c. Then,

ΠP = 2(1− 2c)× 1 = 2(1− 2c).

As a result, we obtain

ΠP = max{ 1

4c
, 2(1− 2c)}.

Proof of lemma 3

The optimal report policy:

First, note that the agent cannot overreport the sales (i.e., r1 ≤ θ1 + y1,

r2 ≤ θ2 + y2). He must report 0 when r1 = y1 = 0 or r2 = y2 = 0. Therefore,

rL1 (0, 0) = rL2 (0, 0, 0) = rL2 (0, 1, 0) = 0.

Second, note that he can carry over the sales for only one period. Then,

he must report 1 if he has a carryover from the previous round (i.e., θt,R =
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1). Therefore, rL1 (1, 0) = rL1 (1, 1) = rL2 (1, 0, 0) = rL2 (1, 1, 0) = rL2 (1, 0, 1) =

rL2 (1, 1, 1) = 1.

Next, we consider the optimal report at the state (0, 0, 1). At this state,

underreporting decreases his total payoff since V (1) − V (0) < b. Hence, it is

optimal for him to report honestly, that is, rL2 (0, 0, 1) = 1.

Then, we consider the optimal report at the sate (0, 1, 1). At this state, the

agent has already achieved his quota in the first round. Then, truth reporting

decreases his total profit since V (0) < V (1). Therefore, it is optimal for him to

carry over the sales at this state, that is, rL2 (0, 1, 1) = 0.

Finally, we consider the optimal report at the sate (0, 1). To derive rL1 (0, 1),

we compare the agent’s total payoff in both r(0, 1) = 0 and r(0, 1) = 1 cases,

where he reports sales optimally at other states and exerts optimal efforts in

every states. Note that the agent has to report the sales either in the first or

second round. Then, whether he delays his sales report or not does not change

his profit in this case. Therefore, rL1 (0, 1) ∈ {0, 1}.

As a result, the optimal report policies are the following two types.

Type 1

rL1 (θ1, y1) =

 1 if θ1 + y1 ≥ 1

0 otherwise

rL2 (θ1, r1, y2) =

 1 if θ1 = 1 or (θ2, r1, y2) = (0, 0, 1)

0 otherwise

Type 2

rL1 (θ1, y1) =

 1 if (θ1, y1) = (0, 1) or (1, 1)

0 otherwise

rL2 (θ1, r1, y2) =

 1 if θ1 = 1 or (θ2, r1, y2) = (0, 0, 1)

0 otherwise

The optimal effort policy:

To derive the agent’s optimal effort policy in low quota contracts, we solve the

Bellman equation characterized in our model.

Type 1
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First, we derive an optimal effort policy when the agent chooses type 1 report

policy. Under this report policy, the state (1, 0) is unreachable. Therefore,

it is enough to derive the optimal effort level in reachable states (i.e., {(0),

(1), (0,0), (0,1),(1,1)}). We derive {eL1 (0), eL1 (1), eL2 (0, 0), eL2 (0, 1), eL2 (1, 1)} by

solving following equations.

V1(0) = −c(eL1 (0))2 + eL1 (0)V2(0, 1) + (1− eL1 (0))V2(0, 0)

V1(1) = −c(eL1 (1))2 + eL1 (1)V2(1, 1) + (1− eL1 (1))V2(0, 1)

V2(0, 0) = beL2 (0, 0)− c(eL2 (0, 0))2 + δV1(0)

V2(0, 1) = b− c(eL2 (0, 1))2 + δ{eL2 (0, 1)V1(1) + (1− eL2 (0, 1))V1(0)}

V2(1, 1) = b− c(eL2 (1, 1))2 + δ{eL2 (1, 1)V1(1) + (1− eL2 (1, 1))V1(0)}

To solve these equations, we first consider eL(1). In this state, the agent

has no incentive to exert efforts because selling the output in that round is not

profitable. That is, eL1 (1) = 0. Furthermore, eL1 (1) = 0 means that the state

{(1, 1)} is not reachable, i.e., eL(1, 1) ∈ [0, 1].

Next, we consider eL(0, 0). Note that the agent’s profit after the next pe-

riod does not depend on whether he can sell the output or not, in that round.

Therefore, his problem at the state {(0, 0)} is

max
e2(0,0)∈E

be2(0, 0)− c(e2(0, 0))2

By solving above the problem, we obtain eL2 (0, 0) = min{1, b2c}.

In the following analysis, we divide the cases into case 1 (2c ≤ b) and case 2

(2c > b) in order to derive {eL1 (0), eL2 (0, 1)}.

Case 1 (2c ≤ b)

Note that eL1 (1) = 0, eL2 (0, 0) = 1. Then, {eL1 (0), eL2 (0, 1)} must satisfy following

equations.

V1(0) = −c(eL1 (0))2 + eL1 (0)V2(0, 1) + (1− eL1 (0))V2(0, 0)

V1(1) = V2(0, 1)
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V2(0, 0) = b− c+ δV1(0)

V2(0, 1) = b− c(eL2 (0, 1))2 + δ{eL2 (0, 1)V1(1) + (1− eL2 (0, 1))V1(0)}

Solving the above equations for eL1 (0) and eL2 (0, 1), we obtain

{eL1 (0), eL2 (0, 1)} = {0, 1} or {2−
√

2,
√

2− 1}.

Case 2 (2c > b)

Note that eL1 (1) = 0, eL2 (0, 0) = b
2c . {e

L
1 (0), eL2 (0, 1)} must satisfy following

equations.

V1(0) = −c(eL1 (0))2 + eL1 (0)V2(0, 1) + (1− eL1 (0))V2(0, 0)

V1(1) = V2(0, 1)

V2(0, 0) =
b2

2c
− b2

4c
+ δV1(0)

V2(0, 1) = b− c(eL2 (0, 1))2 + δ{eL2 (0, 1)V1(1) + (1− eL2 (0, 1))V1(0)}

By solving above equations under the constraint of (2c > b), we can obtain the

following results.

eL1 (0) : c2(eL1 (0))4 − 4c2(eL1 (0))3 + 4c2(eL1 (0))2 − 8c2eL1 (0) + 4bc− b2 = 0

eL1 (1) = 0, eL2 (0, 0) =
b

2c
, eL2 (1, 1) ∈ [0, 1]

eL2 (0, 1) = eL1 (0)− eL1 (0)

2

−1

2

√
−b(b− 4c)

c2
+ eL1 (0)(eL1 (0)((eL1 (0))2 − 2)− 8)

Type 2

Second, we derive an optimal effort policy when the agent chooses type 2 report

policy. Under this report policy, the state (0, 1) is unreachable. Therefore,

it is enough to derive the optimal effort level in reachable states (i.e., {(0),

(1), (0,0), (1,0),(1,1)}). We derive {eL1 (0), eL1 (1), eL2 (0, 0), eL2 (1, 0), eL2 (1, 1)} by

solving following equations.

V1(0) = −c(eL1 (0))2 + eL1 (0)V2(1, 0) + (1− eL1 (0))V2(0, 0)

27



V1(1) = −c(eL1 (1))2 + eL1 (1)V2(1, 1) + (1− eL1 (1))V2(1, 0)

V2(0, 0) = beL2 (0, 0)− c(eL2 (0, 0))2 + δV1(0)

V2(1, 0) = b− c(eL2 (1, 0))2 + δ{eL2 (1, 0)V1(1) + (1− eL2 (1, 0))V1(0)}

V2(1, 1) = b− c(eL2 (1, 1))2 + δ{eL2 (1, 1)V1(1) + (1− eL2 (1, 1))V1(0)}

Similar to Type 1, the following optimal effort policy is obtained.

Case 1 (2c ≤ b)

eL1 (0) = 0, eL1 (1) = 0, eL2 (0, 0) = 1, eL2 (1, 0) = 1, eL2 (1, 1) ∈ [0, 1]

or

eL1 (0) = 2−
√

2, eL1 (1) = 0, eL2 (0, 0) = 1, eL2 (1, 0) =
√

2− 1, eL2 (1, 1) ∈ [0, 1].

Case 2 (2c > b)

eL1 (0) : c2(eL1 (0))4 − 4c2(eL1 (0))3 + 4c2(eL1 (0))2 − 8c2eL1 (0) + 4bc− b2 = 0

eL1 (1) = 0, eL2 (0, 0) =
b

2c
, eL2 (1, 1) ∈ [0, 1]

eL2 (1, 0) = eL1 (0)− eL1 (0)

2

−1

2

√
−b(b− 4c)

c2
+ eL1 (0)(eL1 (0)((eL1 (0))2 − 2)− 8)

Proof of lemma 4

The optimal report rule:

Note that the agent cannot overreport the sales (i.e., r1 ≤ θ1 +y1, r2 ≤ θ2 +y2).

He must report 0 when r1 = y1 = 0 or r2 = y2 = 0. Therefore, rH1 (0, 0) =

rH2 (0, 0, 0) = rH2 (0, 1, 0) = 0.

Note that he can carry over the sales for only one period. Then, he must

report 1 if he has a carryover (i.e., θt,R = 1). Therefore, rH1 (1, 0) = rH1 (1, 1) =

rL2 (1, 0, 0) = rH2 (1, 1, 0) = rH2 (1, 0, 1) = rH2 (1, 1, 1) = 1.

Then, we consider the optimal report at the state (0, 1). Note that if the

agent underreports his sales for the first round, he will never receive the bonus.
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Furthermore, he has to report the carryover in the second round of that period,

even though he cannot make his quota. It follows that carrying over the first

round’s sales does not increase the agent’s profit. Hence, the optimal report at

(0, 1) is to report his true sales, that is, rH1 (0, 1) = 1.

Next, we consider rH2 (0, 0, 1). At this state, truth reporting decrease the

agent’s profit since V1(0) < V1(1). Therefore, it is optimal for him to underre-

port the sales, i.e., rH2 (0, 0, 1) = 0

Finally, we consider rH2 (0, 1, 1). Note that V1(0) − V1(1) < b. Then, truth

reporting is optimal for the agent. That is, rH2 (0, 1, 1) = 1.

As a result, we obtain

rH1 (θ1, y1) =

 1 if θ1 + y1 ≥ 1

0 otherwise

rH2 (θ2, r1, y2) =

 1 if θ2 = 1 or (θ2, r1, y2) = (0, 1, 1)

0 otherwise

The optimal effort policy:

To derive the agent’s optimal effort policy under a high-quota contract, we

solve the Bellman equation. When the agent follows the optimal report policy

{rH1 , rH2 }, then the state (1, 0) is unreachable. Therefore, it is enough to derive

the optimal effort level at reachable states (i.e., {(0), (1), (0,0), (0,1),(1,1)}).

Specifically, we can derive {eH1 (0), eH1 (1), eH2 (0, 0), eH2 (0, 1), eH2 (1, 1)} by solving

following equations.

V1(0) = −c(eH1 (0))2 + eH1 (0)V2(0, 1) + (1− eH1 (0))V2(0, 0)

V1(1) = −c(eH1 (1))2 + eH1 (1)V2(1, 1) + (1− eH1 (1))V2(0, 1)

V2(0, 0) =beH2 (0, 0)− c(eH2 (0, 0))2

+ δ{eH2 (0, 0)V1(1) + (1− eH2 (0, 0))V1(0)}

V2(0, 1) = b− c(eH2 (0, 1))2 + δeH2 (0, 1)V1(0)

V2(1, 1) = b− c(eH2 (1, 1))2 + δ{eH2 (1, 1)V1(1) + (1− eH2 (1, 1))V1(0)}
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To solve these equations, we first consider eH2 (0, 1). Given the optimal report

policy, (0, 1) transitions to (0) regardless of sales in that round. It follows that

the effort level at (0, 1) (i.e., e2(0, 1)) only affects his current period’s profit.

Then, his effort choise problem at (0, 1) is

max
e2(0,1)∈E

be2(0, 1)− c(e2(0, 1))2.

Solving this problem, we obtain eH2 (0, 1) = min{1, b2c}. Next, we consider the

case where 2c < b.

Case 1 (b ≤ 2c)

Note that eH2 (0, 1) = b
2c . Then, {eH1 (0), eH1 (1), eH(0, 0), eH(1, 1)} must satisfy

following equations.

V1(0) = −c(eH1 (0))2 + eH1 (0)V2(0, 1) + (1− eH1 (0))V2(0, 0)

V1(1) = −c(eH1 (1))2 + eH1 (1)V2(1, 1) + (1− eH1 (1))V2(0, 1)

V2(0, 0) =beH2 (0, 0)− c(eH2 (0, 0))2

+ δ{eH2 (0, 0)V1(1) + (1− eH2 (0, 0))V1(0)}

V2(0, 1) = − b
2

4c
+ b+

bδ

2c
V1(0)

V2(1, 1) = b− c(eH2 (1, 1))2 + δ{eH2 (1, 1)V1(1) + (1− eH2 (1, 1))V1(0)}

Solving these equations, we obtain

eH1 (0) =
b3 − 2b2c+ 4c(

√
b4 − 6b3c+ 8b2c2 + 16c4 − 4c2

4(b− 2c)2c
,

eH1 (1) = b3 − 6b2c+ 8bc2 + 16c3 − 4c
√
b4 − 6b3c+ 8b2c2 + 16d4,

eH2 (0, 0) = eH2 (1, 1) =

√
b4 − 6b3c+ 8b2c2 + 16c4 − 4c2

c(4c− b)
,

eH2 (0, 1) =
b

2c

Next, we consider the case where 2c > b, (i.e., eH2 (0, 1) = 1). In this case,

the agent’s optimal effort at (0) is given by

min{b
3 − b2c− 16c3 − 4

√
2(bc)

3
2 + 16

√
2
√
bc5

4(b− 2c)2c
, 1}.
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In the following analysis, we divide the cases into case 2 (2c ≤ b < 4c) and case

3 (4c < b).

Case 2 (2c ≤ b < 4c)

Note that eH1 (0) = b3−b2c−16c3−4
√
2(bc)

3
2 +16

√
2
√
bc5

4(b−2c)2c and eH2 (0, 1) = 1. Substitut-

ing these into the above equations, we obtain

eH1 (0) =
b3 − b2c− 16c3 − 4

√
2(bc)

3
2 + 16

√
2
√
bc5

4(b− 2c)2c
,

eH1 (1) =
1

4(b− 2c)2c
(b3 − 6b2c+ 8bc2 + 16c3 + 4

√
2(bc)

3
2 − 16

√
2
√
bc5),

eH2 (0, 0) = eH2 (1, 1) =

√
2b

3
2√
c

+ 4c− 4
√

2
√
bc

2b− 4c
,

eH2 (0, 1) = 1

Case 3 (4c < b)

Note that eH1 (0) = eH2 (0, 1) = 1. Then, eH1 (1), eH2 (0, 0), eH2 (1, 1) must satisfy

following equations.

V1(0) = −c+ V2(0, 1)

V1(1) = −c(eH1 (1))2 + eH1 (1)V2(1, 1) + (1− eH1 (1))V2(0, 1)

V2(0, 0) =beH2 (0, 0)− c(eH2 (0, 0))2

+ δ{eH2 (0, 0)V1(1) + (1− eH2 (0, 0))V1(0)}

V2(0, 1) = b− c+ δV1(0)

V2(1, 1) = b− c(eH2 (1, 1))2 + δ{eH2 (1, 1)V1(1) + (1− eH2 (1, 1))V1(0)}

Solving these equations, we obtain

eH1 (0) = 1, eH1 (1) ∈ [0, 1],

eH2 (0, 0) = 1, eH2 (0, 1) ∈ [0, 1], eH2 (1, 1) ∈ [0, 1].

Proof of lemma 5

We derive the optimal effort policy under a low-quota contract in non-gaming
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situation. Using backward induction, we first analyze the optimal effort policy

in the second round.

The problem for the agent in the second round is to choose the effort level

for each sales (0 or 1) in the first round. When the sales in the first round is 1,

the agent has no incentive to effort in the second round because the effort does

not increase the wage, but does increase effort costs. That is, e
L(NG)
2 (1) = 0.

We consider the case where the sales in the first round is 0. The agent’s

problem is expressed as

max
e2(0)

be2(0)− c(e2(0))2

Solving this problem, we obtain e
L(NG)
2 (0) = min{1, b2c}

Next, we consider the first round. Given the agent’s effort choice in the

second round, the effort choise problem in the first round is

max
e1

e1[b− ce21 − c(e2(1))2] + (1− e1)[−ce21 + be2(0)− c(e2(0))2].

To solve this problem, we divide it into two cases.

Case 1 : 2c > b

Since e
L(NG)
2 (0) = b

2c and e
L(NG)
2 (1) = 0, then the problem is given by

max
e1

be1 + (1− e1)
b2

2c
− c(e1)2.

Solving the above, we obtain e
L(NG)
1 = b(b+4c)

8c2 .

Case 2 : 2c ≤ b

Since e
L(NG)
2 (0) = 1, the agent makes his quota with probability 1 regardless of

sales in the first round. He has no incentive to exert effort in the first round,

that is, e
L(NG)
1 = 0. As a result, we obtain

{eL(NG)
1 (0), e

L(NG)
2 (1), e

L(NG)
2 (0)} =

 { b(b+4c)
8c2 , 0, b2c} if b

2c ≤ 1

{0, 0, 1} otherwise.

Proof of lemma 6

Similar to lemma 5, we begin with analyzing the second round’s effort policy.

If the agent sells the output in the first round, then his problem in the second
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round is

max
e2(1)

be2(1)− c(e2(1))2

Solving the above, we obtain e
H(NG)
2 (1) = min{1, b2c}.

On the other hand, if the agent cannot sell the output in the first round, he

has no incentive to exert effort because he cannot make quota in that period

even if he sells the output in the second round. That is, e
H(NG)
2 (0) = 0.

Next, we analyze the optimal effort policy for the first round. This problem

is given by

max
e1

e1[−ce21 + be2(1)− c(e2(1))2] + (1− e1)[−ce21 − c(e2(0))2]

We divide it into following two cases.

Case 1 : b ≤ 2c

Since e
H(NG)
2 (1) = b

2c , the agent’s problem for choosing the first round’s effort

is

max
e1

e1[−ce21 + be2(1)− c(e2(1))2] + (1− e1)[−ce21 − c(e2(0))2]

Solving the above, we obtain e
H(NG)
1 = b2

8c2 .

Case 2 : b > 2c

Since e
H(NG)
2 (1) = 1, the agent’s problem for choosing the first round’s effort is

max
e1

(b− c)e1 − c(e1)2

Solving the above, we obtain e
H(NG)
1 = min{1, b−c2c }.

As a result, we obtain

{eH(NG)
1 (0), e

H(NG)
2 (1), e

H(NG)
2 (0)} =


{ b

2

8c2 , 0,
b
2c} if b

2c ≤ 1

{ b−c2c , 0, 1} if b−c
2c < 1 ≤ b

2c .

{1, 0, 1} if 1 < b−c
2c .

Appendix B

In appendix B, we will give “Mathematica’s codes” that derive result 1-6.
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Linear Contract
The agent’s optimal effort

LinearOptimalEffort[b_, c_] :=
最小

Min[1, b / (2 * c)]

The optimal bonus (the agent’s optimal effort is given)

LinearOptimalBonus[c_] :=
関数が最大となる変数の位置

ArgMax[{2 * (1 - b) * LinearOptimalEffort[b, c], 0 ≤ b}, b]

The principal’s optimal profit

LinearOptimalΠ[c_] :=

2 * (1 - LinearOptimalBonus[c]) * LinearOptimalEffort[LinearOptimalBonus[c], c]

The total effort in one period

LinearTotalOptimalEffort[c_] := 2 * LinearOptimalEffort[LinearOptimalBonus[c], c]

The expected payment per period

LinearExpectedPayment[c_] :=

2 * LinearOptimalEffort[LinearOptimalBonus[c], c] * LinearOptimalBonus[c]

High-Quota Contract
The principal profit

HighQuotaΠ[e10_, e11_, e200_, e201_, e211_, c_, b_] :=

(e10 (1 + e201 - b e201) - (-1 + e10) e200 (1 + (-1 + b) e11 (-1 + e201) + e201 - b e201) +

e10 e11 (-1 + (-1 + b) e201) e211) / (1 + e200 - e10 e200 - e11 e211)

The principal profit when the agent chooses optimal effort given by Lemma 4

HIGHQuotaΠ[b_, c_] :=
区分

Piecewise

HighQuotaΠb3 - 2 b2 c + 4 c -4 c2 + b4 - 6 b3 c + 8 b2 c2 + 16 c4   4 (b - 2 c)2 c,

b3 - 6 b2 c + 8 b c2 + 16 c3 - 4 c b4 - 6 b3 c + 8 b2 c2 + 16 c4   4 (b - 2 c)2 c,

-4 c + b4-6 b3 c+8 b2 c2+16 c4

c

-2 b + 4 c
,

b

2 c
,
-4 c + b4-6 b3 c+8 b2 c2+16 c4

c

-2 b + 4 c
, c, b, 0 ≤ b < 2 c,

HighQuotaΠ
b3 - 2 b2 c - 16 c3 - 4 2 (b c)3/2 + 16 2 b c5

4 (b - 2 c)2 c
,

b3 - 6 b2 c + 8 b c2 + 16 c3 + 4 2 (b c)3/2 - 16 2 b c5   4 (b - 2 c)2 c,

2 b3/2

c
+ 4 c - 4 2 b c

2 b - 4 c
, 1,

2 b3/2

c
+ 4 c - 4 2 b c

2 b - 4 c
, c, b,

2 c ≤ b ≤ 4 c, {HighQuotaΠ[1, 0, 0, 1, 0, c, b], 4 * c < b}
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The optimal bonus

HIGHOptimalBonus[c_] :=
関数が最大となる点

NArgMax[{HIGHQuotaΠ[b, c], 0 ≤ b ≤ 2}, b]

The principal’s optimal profit

HIGHOptimalΠ[c_] := HIGHQuotaΠ[HIGHOptimalBonus[c], c]

The expected effort at the first round when the agent chooses the optimal report policy given by 
Lemma 4

High1stEffort[e10_, e11_, e200_, e201_, e211_] :=
-1 + e11 e211

-1 + (-1 + e10) e200 + e11 e211
* e10 +

(-1 + e10) e200

-1 + (-1 + e10) e200 + e11 e211
* e11

The expected effort at the first round when the agent chooses the optimal report policy and the 
effort policy given by Lemma 4

HIGH1stEffort[b_, c_] :=
完全に簡約

FullSimplify

区分

PiecewiseHigh1stEffort
b3 - 2 b2 c + 4 c -4 c2 + b4 - 6 b3 c + 8 b2 c2 + 16 c4 

4 (b - 2 c)2 c
,

b3 - 6 b2 c + 8 b c2 + 16 c3 - 4 c b4 - 6 b3 c + 8 b2 c2 + 16 c4

4 (b - 2 c)2 c
,

-4 c + b4-6 b3 c+8 b2 c2+16 c4

c

-2 b + 4 c
,

b

2 c
,
-4 c + b4-6 b3 c+8 b2 c2+16 c4

c

-2 b + 4 c
, 0 ≤ b ≤ 2 c,

High1stEffort
b3 - 2 b2 c - 16 c3 - 4 2 (b c)3/2 + 16 2 b c5

4 (b - 2 c)2 c
,

b3 - 6 b2 c + 8 b c2 + 16 c3 + 4 2 (b c)3/2 - 16 2 b c5

4 (b - 2 c)2 c
,

2 b3/2

c
+ 4 c - 4 2 b c

2 b - 4 c
, 1,

2 b3/2

c
+ 4 c - 4 2 b c

2 b - 4 c
, 2 c ≤ b ≤ 4 c, {High1stEffort[1, 0, 0, 1, 0], 4 * c < b}

The expected effort at the second round when the agent chooses the optimal report policy given by 
Lemma 4

High2ndEffort[e10_, e11_, e200_, e201_, e211_] := -
(-1 + e10) (-1 + e11 e211)

-1 + (-1 + e10) e200 + e11 e211
* e200 +

(((-1 + e11) e200 + e10 (-1 + e200 - e11 e200 + e11 e211)) /

(-1 + (-1 + e10) e200 + e11 e211)) * e201 +
(-1 + e10) e11 e200

-1 + (-1 + e10) e200 + e11 e211
* e211

The expected effort at the second round when the agent chooses the optimal report policy and the 
effort policy given by Lemma 4

2     Appendix B.nb

35



HIGH2ndEffort[b_, c_] :=
完全に簡約

FullSimplify
区分

Piecewise

High2ndEffortb3 - 2 b2 c + 4 c -4 c2 +√b4 - 6 b3 c + 8 b2 c2 + 16 c4  4 (b - 2 c)2 c,

b3 - 6 b2 c + 8 b c2 + 16 c3 - 4 c√b4 - 6 b3 c + 8 b2 c2 + 16 c4  4 (b - 2 c)2 c,

-4 c + b4-6 b3 c+8 b2 c2+16 c4

c

-2 b + 4 c
,

b

2 c
,
-4 c + b4-6 b3 c+8 b2 c2+16 c4

c

-2 b + 4 c
, 0 ≤ b ≤ 2 c,

High2ndEffortb3 - 2 b2 c - 16 c3 - 4 2 (b c)3/2 + 16 2 b c5   4 (b - 2 c)2 c,

b3 - 6 b2 c + 8 b c2 + 16 c3 + 4 2 (b c)3/2 - 16 2 b c5   4 (b - 2 c)2 c,

2 b3/2

c
+ 4 c - 4 2 b c

2 b - 4 c
, 1,

2 b3/2

c
+ 4 c - 4 2 b c

2 b - 4 c
,

2 c ≤ b ≤ 4 c, {High2ndEffort[1, 0, 0, 1, 0], 4 * c < b}

The total expected effort in one period

HIGHTotalEffort[b_, c_] := HIGH1stEffort[b, c] + HIGH2ndEffort[b, c]

The total expected effort in one period when the principal chooses the optimal bonus

HIGHTotalEffortUnderOptimalbonus[c_] := HIGHTotalEffort[HIGHOptimalBonus[c], c]

The expected payment

HighPayment[e10_, e11_, e200_, e201_, e211_, b_] :=
(-1 + e11) e200 + e10 (-1 + e200 - e11 e200 + e11 e211)

-1 + (-1 + e10) e200 + e11 e211
* e201 +

(-1 + e10) e11 e200

-1 + (-1 + e10) e200 + e11 e211
* b

The expected payment when the agent chooses the optimal policy and the optimal effort policy 
given by Lemma 4

Appendix B.nb    3
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HIGHPayment[b_, c_] :=

完全に簡約

FullSimplify
区分

PiecewiseHighPayment
b3 - 2 b2 c + 4 c -4 c2 + b4 - 6 b3 c + 8 b2 c2 + 16 c4 

4 (b - 2 c)2 c
,

b3 - 6 b2 c + 8 b c2 + 16 c3 - 4 c b4 - 6 b3 c + 8 b2 c2 + 16 c4

4 (b - 2 c)2 c
,

-4 c + b4-6 b3 c+8 b2 c2+16 c4

c

-2 b + 4 c
,

b

2 c
,
-4 c + b4-6 b3 c+8 b2 c2+16 c4

c

-2 b + 4 c
, b, 0 ≤ b ≤ 2 c,

HighPayment
b3 - 2 b2 c - 16 c3 - 4 2 (b c)3/2 + 16 2 b c5

4 (b - 2 c)2 c
,

b3 - 6 b2 c + 8 b c2 + 16 c3 + 4 2 (b c)3/2 - 16 2 b c5

4 (b - 2 c)2 c
,

2 b3/2

c
+ 4 c - 4 2 b c

2 b - 4 c
, 1,

2 b3/2

c
+ 4 c - 4 2 b c

2 b - 4 c
, b,

2 c ≤ b ≤ 4 c, {HighPayment[1, 0, 0, 1, 0, b], 4 * c < b}

The expected payment when the principal chooses the optimal bonus

HIGHOptimalPayment[c_] := HIGHPayment[HIGHOptimalBonus[c], c]

High-Quota contract (Non-Gaming)
The agent’s optimal effort at the second round

NonGamingHigh2ndEffort[b_, c_] :=
最小

Min[1, b / (2 * c)]

The agent’s optimal effort at the first round

NonGamingHigh1stEffort[b_, c_] :=

関数が最大となる変数の位置

ArgMax[{e1 * (NonGamingHigh2ndEffort[b, c] * b - c * NonGamingHigh2ndEffort[b, c]^2) -

c * e1^2, 0 ≤ e1 ≤ 1}, e1]

The principal’s profit when the agent chooses the optimal policy and the optimal effort policy given 
by Lemma 4

NonGamingHighΠ[b_, c_] :=

NonGamingHigh1stEffort[b, c] * NonGamingHigh2ndEffort[b, c] * (2 - b) +

NonGamingHigh1stEffort[b, c] * (1 - NonGamingHigh2ndEffort[b, c])

The optimal bonus

NonGamingHighOptimalBonus[c_] :=
関数が最大となる点

NArgMax[{NonGamingHighΠ[b, c], 0 ≤ b}, b]

The principal’s optimal profit

NonGamingHighOptimalΠ[c_] := NonGamingHighΠ[NonGamingHighOptimalBonus[c], c]

4     Appendix B.nb
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The expected total effort in one period

NonGamingHighTotalEffort[c_] :=

NonGamingHigh1stEffort[NonGamingHighOptimalBonus[c], c] +

NonGamingHigh1stEffort[NonGamingHighOptimalBonus[c], c] *

NonGamingHigh2ndEffort[NonGamingHighOptimalBonus[c], c]

The optimal expected payment when the agent chooses the optimal policy and the optimal effort 
policy given by Lemma 4

NonGamingHighOptimalPayment[c_] :=

NonGamingHigh1stEffort[NonGamingHighOptimalBonus[c], c] * NonGamingHigh2ndEffort[

NonGamingHighOptimalBonus[c], c] * NonGamingHighOptimalBonus[c]

Low-Quota Contract
The agent’s expected utility

LowU[e10_, e11_, e200_, e201_, e211_, b_, c_] :=

b (e200 + (-1 + e11) e200 e201 - e11 e200 e211 +

e10 (1 + e11 e201 + e200 (-1 + e201 - e11 e201) + e11 (-1 + e200) e211)) -

c e102 (1 + (-1 + e11) e201 - e11 e211) + e2002 (1 + (-1 + e11) e201 - e11 e211) +

e10 e2002 (-1 + e201 - e11 e201 + e11 e211) + e201

e201 + e11 e11 - e201 e211 + e2112  (1 + (-1 + e10 + e11) e201 - e11 e211)

The agent’s optimal effort at the first round when he does not have carryover

Low1stOptimalEffort0[b_, c_] :=

関数が最大となる変数の位置

ArgMax[{LowU[e10, 0, e200, e201, 0, b, c], 0 ≤ e10 ≤ 1, 0 ≤ e200 ≤ 1, 0 ≤ e201 ≤ 1},

{e10, e200, e201}][[1]]

The agent’s optimal effort at the second round when he does not have carryover and does not 
report the sales at the first round

Low2ndOptimalEffort00[b_, c_] :=

関数が最大となる変数の位置

ArgMax[{LowU[e10, 0, e200, e201, 0, b, c], 0 ≤ e10 ≤ 1, 0 ≤ e200 ≤ 1, 0 ≤ e201 ≤ 1},

{e10, e200, e201}][[2]]

The agent’s optimal effort at the second round when he have carryover but does not report the 
sales at the first round

Low2ndOptimalEffort01[b_, c_] :=

関数が最大となる変数の位置

ArgMax[{LowU[e10, 0, e200, e201, 0, b, c], 0 ≤ e10 ≤ 1, 0 ≤ e200 ≤ 1, 0 ≤ e201 ≤ 1},

{e10, e200, e201}][[3]]

The principal’s profit

LowΠ[e10_, e11_, e200_, e201_, e211_, b_, c_] :=

((1 - b) (e10 (-1 + e200) - e200) + ((-2 + b) e10 e11 - (-1 + b) (-1 + e10) (-1 + e11) e200)

e201 + (-1 + b) e11 (e10 (-1 + e200) - e200) e211) / (-1 - (-1 + e10 + e11) e201 + e11 e211)

The principal’s profit when the agent chooses the optimal report policy and the effort policy given 
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by Lemma 4

LOWΠ[b_, c_] := LowΠ[Low1stOptimalEffort0[b, c], 0,

Low2ndOptimalEffort00[b, c], Low2ndOptimalEffort01[b, c], 0, b, c]

The principal’s optimal profit

LOptimalΠ[c_] :=
数値最大化

NMaximize[{LOWΠ[b, c], 0 ≤ b < 1}, b]

Low-Quota Contract (Non-Gaming)
The agent’s optimal effort at the second round

NonGamingLow2ndEffort[b_, c_] :=
最小

Min[1, b / (2 * c)]

The agent’s optimal effort at the first round

NonGamingLow1stEffort[b_, c_] :=
関数が最大となる変数の位置

ArgMax[

{e1 * b + (1 - e1) * (NonGamingLow2ndEffort[b, c] * b - c * NonGamingLow2ndEffort[b, c]^2) -

c * e1^2, 0 ≤ e1 ≤ 1}, e1]

The principal’s profit when the agent chooses optimal effort given by Lemma 5.

NonGagmingLowΠ[b_, c_] := (NonGamingLow1stEffort[b, c] +

(1 - NonGamingLow1stEffort[b, c]) * NonGamingLow2ndEffort[b, c]) * (1 - b)

The principal’s optimal profit

NonGagmingLowOptimalΠ[c_] :=
関数が最大となる点

NArgMax[{NonGagmingLowΠ[b, c], 0 ≤ b}, b]

6     Appendix B.nb
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