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Abstract

Standard agency theory predicts that there is a negative trade-off be-

tween the amount of uncertainty and the incentive strength in linear con-

tracts. However, this relationship is not empirically supported. In this

paper, in order to re-examine this relationship, we investigate a contrac-

tual issue in which a risk neutral principal hires a risk averse agent who

has the specific knowledge about the consequences of the agent’s actions.

The main result of this paper is that uncertainty does not affect the in-

centive strength in optimal linear contracts when the principal can use

not only an output measure but also an input measure to evaluate the

agent’s performance.
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1 Introduction

Choosing performance measures is an important and difficult problem for firms.

The standard agency theory predicts that there is a negative trade-off between

the amount of uncertainty and the strength of incentives in the optimal linear

incentive contracts.1 The intuition of this prediction is as follows. If a firm

uses a linear contract, uncertainty in performance measures generates employ-

ees’ income risk. Furthermore, the income risk decreases employees’ utility if

they are risk averse. It follows that when uncertainty increases, the firm may

reduce performance pay in order to lower the risk premium generated from the

income risk. That is, an increase in uncertainty decreases the equilibrium level

of incentives because incentives become more costly to provide. As a result,

uncertainty negativly related to the equilibrium level of incentives.

However, many empirical works do not support this relationship. For exam-

ple, Prendergast (2002) points out that “the data suggest a positive relationship

between measures of uncertainty and incentives rather than the posited negative

tradeoff ”.

It is well known that the difference between the theoretical prediction and

the empirical result is due to the difference in the definition of uncertainty.

Whereas in theory the standard model focuses only on uncertainty that the

agent can not control (e.g., measurement error in output), in practice there exists

different types of uncertainty. In order for re-examination of the relationship

between uncertainty and incentives, recent studies introduce different types of

uncertainty to the standard moral hazard framework. Especially, many studies

focus on uncertainty that generated from the agent’s private information.2

For example, Baker and Jorgensen (2003) consider a moral hazard model in

which the agent privately receives information about the principal’s preferred

action after the singing of the contract but before choosing action. This type

of information can be interpreted as “the specific knowledge” in the sense of

1see Holmstrom (1979), Holmstrom and Milgrom (1987)
2see Zabojnik (1996), Baker and Jorgensen (2003), Raith (2008), Shi (2007) and Rantakari

(2008)
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Jensen and Meckling (1992). In their model, the agent is assumed to unable to

communicate this knowledge to the principal. Therefore, the principal does not

know which action are most profitable, and thus this asymmetry of information

generates uncertainty for the principal. They refer this type of uncertainty to

“volatility” while uncertainty in the standard model to “noise”. Their main

result is that the equilibrium incentive strength is negatively related to noise,

whereas positively related to volatility.

Raith (2008) study a model similar to Baker and Jorgensen (2003) in the

sense that the agent has specific knowledge. But his model is assumed that the

principal can use multiple performance measures. Specifically, he focuses on

linear incentive contracts which are based both on an output measure and an

input measure. The output measure (e.g., total sales or firm’s profit) is closely

related to the principal’s payoff and subjects to random influences outside the

agent’s control. Therefore, if the principal uses output-based pay, while the

principal can motivate the agent to use specific knowledge, must compensate

the agent for the income risk. On the other hand, the input measure (e.g.,

working hours) is closely related to the agent’s action and less likely to be

affected by random influences. That is, while input-based pay cannot motivate

the agent to use specific knowledge, does not expose the agent to the income risk.

Consequently, the principal faces a trade-off between using specific knowledge

and reducing the agent’s income risk.

Raith (2008) shows that the optimal weight on output-based pay increases

with the value of the agent’s specific knowledge and decreases with random

influences outside the agent’s control. That is, his result implies that the equi-

librium incentive strength of output measure is negatively related to noise and

positively related to volatility.3

Whereas Raith (2008) examines how changes in these two types of uncer-

tainty affect the design of the optimal linear contract, he does not explain the

relationship between the amount of uncertainty and the strength of incentives

3Raith (2008) refers noise to environmental uncertainty and volatility to technological

uncertainty.
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in the optimal linear contract. The main purpose of our study is to complement

his result by considering the relationship between uncertainty and incentives.

Specifically, we will examine how these two types of uncertainty affect the equi-

librium level of effort in the case where the agent has specific knowledge and

the principal can use multiple performance measures.

In this paper, similar to Raith (2008), we consider a model in which the

principal can use two types of performance measure (i.e., an output measure and

an input measure) and the agent receives the information about productivity

of activities after contracting but before choosing actions. It follows that the

principal faces the same trade-off as Raith (2008).

Our main result is that both changes in the amount of noise and that of

volatility do not affect the equilibrium level of incentives. Specifically, these

two types of uncertainty do not change the sum of the equilibrium effort levels

of each activity. The intuition of this result is as follows. As the amount of

noise increases, the agent’s income risk generated by output-based pay increases.

Therefore, the principal reduces the weight on output-based pay to decrease the

risk premium generated by the income risk, and then the agent’s effort incentives

generated by output-based pay decreases. On the other hand, as the amount

of noise increases, the weight on input-based pay increases because input-based

pay does not generates the income risk. Since these two effects on incentives

cancel each other out, as a result, the amount of noise does not affect incentives.

Contrary, as the amount of volatility increases, the value of the agent’s spe-

cific knowledge increases, and then the principal prefers to use this information

by increasing the weight on output-based pay. Since an increase in the weight

on output-based pay increases the agent’s effort level, the principal can reduce

input-based pay while keeping effort levels. As a result, the amount of volatility

also does not affect incentives. From the above, both of noise and volatility do

not affect the incentive strength in equilibrium.

Our results are consistent with sevral empirical works. First, our main re-

sult that uncertainty does not affect incentives is consistent with Prendargast’s

prediction, which is the “tenuous” trade-off between uncertainty and incentives.
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Second, our other result that the parincipal keeps incentives by controlling the

weight on performance measures is consistent with the empirical result by Gibbs

et al (2009). They show that firms use several performance measures comple-

mentary to control uncertainty, using data from auto dealership manager incen-

tive systems. That is, for example, if the first performance measure has a large

noise, then firms add the other type of performance measures which has little

noise to reduce uncertainty in performance evaluations.

This paper is organized as follows. We begin with formulating our model

in section 2. Section 3 characterizes the optimal incentive linear contract in

the model and examine the relationship between uncertainty and incentives.

Finally, we conclude in section 4.

2 The Model

We consider a moral-hazard model in which a risk neutral principal (female)

hires a risk averse agent (male) to exert effort on two activities.4

Production:

Output, which is denoted by y, is given by

y =

2∑
i=1

θiei + ε,

where ei(≥ 0) is a effort level of activity i, θi(≥ 0) is the marginal productivity

of activity i’s effort and ε is the random variable that is distributed by a normal

distribution that has mean 0 and variance σ2
ε , i.e., ε ∼ N(0, σ2

ε ).

Information about θ:

The principal knows only the distribution of θ = (θ1, θ2) (i.e., she does not know

the realization of θ), while the agent obtains the information about the realiza-

tion of θ after contracting but before choosing his effort. θ and its distribution

are characterized as follows.

4To keep the model simple, we consider the two-acitivity model. But we can easily extend

this model to n-activity model.
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• For all i(= 1, 2), θi ∈ {θL, θH}, where 0 < θL ≤ θH .

• Each activity’s productivity does not overlap, that is, if θ1 = θL, then

θ2 = θH .

• For all i(= 1, 2) and k(= L,H), Prob(θi = θk) = 1
2 .

• Mean and variance of θ are denoted by M(> 0) and σ2
θ(> 0), respectively.

That is, 1
2 (θL + θH) = M and 4(θL − θH)2 = σ2

θ .

We assume that the agent can not communicate this information to the prin-

cipal. It follows that this information can be interpreted as the agent’s specific

knowledge in the sense of Jensen and Meckling (1992). On the other hand, σ2
θ

can be interpreted as volatility in the sense of Baker and Jorgensen (2003). Fur-

thermore, since the specific knowledge is more valuable for the principal when

σ2
θ increases, we can use σ2

θ as the measure regarding the value of the agent’s

specific knowledge.

Uncertainty:

Both of the principal and the agent know the distribution of ε before contract-

ing, whereas they do not know the realization of ε before the agent chooses his

effort level. It follows that the agent chooses an effort level before he knows

the realization of ε, and thus the realization of ε does not affect the agent’s

effort level. Therefore, σ2
ε can be interpreted as noise in the sense of Baker and

Jorgensen (2003).

Agent’s utility:

The agent has a constant absolute risk-aversion (CARA) utility function given

by

u(w, e1, e2) = −exp[−R(w −
2∑
i=1

d

2
e2i )],

where R(> 0) represents the degree of absolute risk-aversion, w is the principal’s

payment to the agent and de2i /2 is the agent’s disutility of exerting activity i’s
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effort.5

Performance measurement:

We assume that the principal can observe and verify not only the output (y)

but also the effort level of each activity (e1 + e2). That is, the principal can

use output-based pay that depends on y and input-based pay that depends on

(e1, e2). If the principal uses output-based pay, then the principal can give the

agent strong incentives to use his specific knowledge because he chooses the

effort level of each activity (e1, e2) to maximize y, whereas this type of payment

imposes the income risk to the agent because output contains random variable

ε. On the other hand, input-based pay does not impose the income risk to the

agent because it does not have uncertainty for the agent, while does not give

the agent incentives to use the specific knowledge.

Compensation:

We focus on linear contracts that combine output-based pay and input-based

pay. For simplicity, we assume that input-based pay depends on the total effort

of each activity (i.e., e1 + e2).

Hence, the principal’s payment to the agent is characterized as follows.

w = α+ βy + γ(e1 + e2).

where α is a fixed payment, β is a payment rate for output y and γ is a payment

rate for the total input e1 + e2. In this notations, β can be interpreted as the

weight on output-based pay, while γ is the weight on input-based pay.

Timing:

The timing of this game is as follows.

1. The principal offers a compensation plan (α, β, γ) to the agent.

2. The agent chooses to accept or reject the offer. If he chooses rejection,

then he receives reservation wage W̄ (we normalize it to 0) from his outside

5The agent’s disutility function is based on Baker (2002) in the sense that the disutility

from exerting effort of each activity is additively separable.
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option.

3. The agent recieves the information about the realization of θ.

4. The agent chooses the effort level of each activity (e1, e2).

5. The output y realizes and the agent is compensated accordingly.

The principal’s problem:

The principal’s problem is to design a linear contract that depends on y and

e1+e2 to maximize her expected value of y−w(y) by giving the agent incentives

to accept the contract and to choose his effort levels optimally. Hence, her

problem can be described as follows.

max
α,β,γ,e1,e2

E[y − w|ε, θ1, θ2]

subject to

ei ∈ arg max
ei

E[u(w, e1, e2)|ε] for i = 1, 2, (1)

E[u(w, e1, e2))|ε, θ1, θ2] ≥ 0. (2)

Here, constraints (??) and (??) imply the incentive compatibility constraint and

the participation constraint, respectively.

3 The optimal contract

In this section, we analyze our model to examine the relationship between un-

certainty (σ2
ε or σ2

θ) and the equilibrium level of incentives. We begin with

considering the agent’s problem in order to solve the principal’s problem de-

scribed above.

The agent’s problem is to decide whether to accept or reject the principal’s

offer and to choose his effort level to maximize his expected utility. First,

we consider the agent’s problem for choosing the optimal effort level of each

activity. Given the compensation scheme w, the agent chooses his effort level

to maximize his certainty equivalent after θ is realized. Therefore, to derive
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the optimal effort levels (denoted by e∗1(θ1) and e∗2(θ2)), we need to characterize

the agent’s certainty equivalent after he observes the realization of θ, which is

denoted by CEac. Following lemma characterizes CEac.

Lemma 1 The agent’s certainty equivalent after he observed the realization of

θ is given by

CEac = α+

2∑
i=1

{β(θiei) + γei −
d

2
e2i })−

1

2
Rβ2σ2

ε .

Proof. see the Appendix.

Given lemma 1, the agent’s problem for choosing the optimal effort level can be

expressed as

max
e1,e2

CEac

= max
e1,e2

α+

2∑
i=1

{β(θiei) + γei −
d

2
e2i })−

1

2
Rβ2σ2

ε .

By differentiating the agent’s objective function with respect to ei, the first-

order condition for activity i’s optimal effort level is

βθi + γ − de∗i = 0.

Hence, activity i’s optimal effort level is given by

e∗i (θi) =
βθi + γ

d
. (3)

(??) implies that the optimal effort level of activity i depends on the realization

of θi. Therefore, we denoted it as e∗(θi).

Second, we consider the agent’s decision regarding participation. The agent

will choose acceptance if his expected wage at the time of receiving the offer

is higher than reservation wage. Specifically, the certainty equivalent before he

observes the realization of θ, which is denoted by CEbc, is higher than 0. Note

that the agent chooses the optimal effort levels by using the information of the

realization of θ. Hence, we need to derive CEbc by assuming that e1 = e∗(θ1)

and e2 = e∗(θ2). However, CEbc is mathematically more complex than CEac
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because the risk-averse agent calculates CEbc taking into account not only noise

σ2
ε but also volatility σ2

θ . Following lemma characterizes CEbc.

Lemma 2 The agent’s certainty equivalent before he observes the realization of

θ is given by

CEbc = α− 1

2
Rβ2σ2

ε +
∑

k∈{H,L}

{βθke∗(θk) + γe∗(θk)− d

2
(e∗(θk))2}

Proof. see the Appendix.

To satisfy the participation constraint, CEbc must be equal or higher than 0.

Therefore, it is optimal for the principal to set α so that CEbc equals 0.

Specifically, α∗ is determined to satisfy the following equation.

α∗ =
1

2
Rβ2σ2

ε −
∑

k∈{H,L}

{βθke∗(θk) + γe∗(θk)− d

2
(e∗(θk))2}.

On the other hand, the principal’s certainty equivalent (denoted by CEP ) is

given by

CEP = E[y − w|ε,θ]

=
1

2

2∑
i=1

∑
k∈{H,L}

θke∗i (θ
k)

−(α∗ +
1

2

2∑
i=1

∑
k∈{H,L}

{βθke∗i (θk) + γe∗i (θ
k)})

=
∑

k∈{H,L}

{θke∗(θk)− (α∗ + βθke∗(θk) + γe∗(θk))}

Then, the total amount of the certainty equivalent (denoted by CE), which is

defined CEP + CEbc, is given by

CE =
∑

k∈{H,L}

{θke∗(θk)− d

2
(e∗(θk)2} − 1

2
Rβ2σ2

ε

By maximization principle, the principal’s problem is to design the compensa-

tion scheme that maximizes CE. That is, her problem can be rewritten as

max
β,γ

∑
k∈{H,L}

{θke∗(θk)− d

2
(e∗(θk)2} − 1

2
Rβ2σ2

ε (4)
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Following proposition characterizes the optimal weight on output-based pay and

input-based pay by solving above problem.

Proposition 1 In the equilibrium, the optimal weight on output-based pay (de-

noted by β∗) and input-based pay (denoted by γ∗) are given by

β∗ =
2σ2

θ

dRσ2
ε + 2σ2

θ

, γ∗ =
dMRσ2

ε

dRσ2
ε + 2σ2

θ

.

Furthermore,

β∗ +
1

M
γ∗ = 1. (5)

Proof. see the Appendix.

(??) implies that R, σ2
ε and σ2

θ do not change the sum of the weight on input

and output-based payment.

Furthermore, the following proposition shows that the sum of equilibrium

effort level of two activities also is not affected by R, σ2
ε and σ2

θ .

Proposition 2 In the equilibrium, the agent’s total effort (i.e., e∗1+e∗2) is given

by 2M
d .

Proof. see the Appendix.

This proposition implies that the agent’s risk attitude, the amount of volatility

and the amount of noise do not affect the agent’s total effort level in the equi-

librium. Futhermore, the results of proposition 1 and 2 can be interpreted that

uncertainty does not affect incentives.

Next, we check how changes in R, σ2
ε and σ2

θ affect β∗ and γ∗ in order to

confirm the individual effects. Following proposition shows that the results of

our model are consistent with previous studies such as Baker and Jorgensen

(2003), Raith (2008) and Gibbs et al (2009).

Proposition 3 In the equilibrium, following inequality must be hold.

∂β∗

∂σ2
ε

< 0,
∂β∗

∂σ2
θ

> 0,
∂β∗

∂R
< 0 (6)

∂γ∗

∂σ2
ε

> 0,
∂γ∗

∂σ2
θ

< 0,
∂γ∗

∂R
> 0. (7)
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(??) implies that β∗ is increasing in σ2
θ but decreasing in σ2

ε and R. First

and third inequality (∂β
∗

∂σ2
ε
< 0 and ∂β∗

∂σ2
θ

> 0, respectively) in (??) can be inter-

preted that the amount of noise and the degree of the agent’s risk aversion are

negatively related to the incentives of output-based pay. These relationships

are consistent with standard agency theory such as Holmstrom (1979) in the

sense that an increase risk or noise decreases incentives generated provided by

output-based pay. Second inequality (∂γ
∗

∂σ2
ε
> 0) in (??) can be interpreted that

the amount of volatility is positively related to the incentives in output-based

pay. This result is consistent with Raith (2008) in the sense that an increase in

the value of the agent’s specific knowledge increases the incentives provided by

output-based pay.

On the other hand, (??) implies that the optimal weight on input-based pay

decreases with the amount of noise and the degree of risk-averse, while increases

with the amount of volatility. That is, γ∗ is affected by these three factors (i.e.,

σ2
ε , σ

2
θ , R) in the opposite way to β∗.

From proposition 1, 2 and 3, we can say that the principal keeps the amount

of incentives given to the agent constant by controlling the weights on output-

based pay and input-based pay for each type of uncertainty.

4 Conclusion

This paper studies the controversial issue about the relationship between un-

certainty and incentives in linear contracts. To examine this relationship, we

consider the model in which the agent is risk averse and has specific knowledge

about productivity of each activity. Our model is similar to Baker and Jor-

gensen (2003) and Rantakari (2008) in the sense that a risk neutral principal

offers a linear contract to a risk averse agent, while is similar to Raith (2008) in

the sense that the agent has specific knowledge and the principal designs linear

contracts that combine output-based pay and input-based pay.

Our results provide rationales for some previous empirical studies. For ex-

amples, the main result of this paper is that the agent’s equilibrium effort level
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is unaffected not only by the amount of uncertainty, but also his risk attitude.

This result is consistent with the prediction of Prendargast (2002), which is the

“tenuous” relationship between uncertainty and incentives. In addition, another

result of this paper (proposition 3) is consistent with Gibbs et al. (2009) in the

sense that the principal controls the agent’s risk and incentives by adjusting the

weights on available performance measures.

Appendix

Proof of lemma 1

Note that CEac satisfies

u(CEac, 0, 0) = E[u(w, e1, e2)|ε]. (8)

LHS of (??) can be rewritten as

u(CEac, 0, 0) = −exp[−R(CEac)]. (9)

On the other hand, RHS of (??) is

E[u(w, e1, e2)|ε]

=

ˆ
−exp[−R(w − d

2

2∑
i=1

e2i )
1√

2πσ2
ε

exp(− ε2

2σ2
ε

)dε

=

ˆ
− exp[−R

2∑
i=1

{α+ β(θiei + ε) + γei −
d

2
e2i }]

1√
2πσ2

ε

exp(− ε2

2σ2
ε

)dε

=
1√

2πσ2
ε

ˆ
− exp[− ε2

2σ2
ε

−Rβε−R
2∑
i=1

{α+ β(θiei) + γei −
d

2
e2i }]dε

=
1√

2πσ2
ε

ˆ
− exp[−(aε2 + bε+ c)]dε,

where

a =
1

2σ2
ε

, b = Rβ, c = R

2∑
i=1

{α+ β(θiei) + γei −
d

2
e2i }.
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By using Gauss integral, it can be rewritten as

1√
2πσ2

ε

(− exp[
b2

4a
− c]

√
π

a
)

=
1√

2πσ2
ε

− exp[
(Rβ)2

4( 1
2σ2
ε
)
−R

2∑
i=1

{α+ β(θiei) + γei −
d

2
e2i }]

√
π
1

2σ2
ε

= − exp[
1

2
R2β2σ2

ε −R
2∑
i=1

{α+ β(θiei) + γei −
d

2
e2i }]]

= − exp[−R(

2∑
i=1

{α+ β(θiei) + γei −
d

2
e2i } −

1

2
Rβ2σ2

ε )].

As a result, we obtain

CEac =

2∑
i=1

{α+ β(θiei) + γei −
d

2
e2i } −

1

2
Rβ2σ2

ε .

Proof of lemma 2

CEbc satisfies

u(CEbc, 0, 0) = E[u(w, e∗1, e
∗
2)|ε, θ]. (10)

LHS of (??) can be rewritten as

u(CEbc, 0, 0) = −exp[−R(CEbc)]. (11)

On the other hand, RHS of (??) is

E[u(w, e∗1, e
∗
2)|ε, θ]

= E[

ˆ
− exp[−R

2∑
i=1

{α+ β(θie
∗
i ) + γie

∗
i −

d

2
(e∗i )

2}] 1√
2πσ2

ε

exp(− ε2

2σ2
ε

)dε|θ]

Note that Prob(θ1 = θHand θ2 = θL) = Prob(θ1 = θLandθ2 = θH) = 1
2 . Then,

it can be rewritten by

1

2
{
ˆ
− exp[−R(α+ β(θHe∗1(θH) + θLe∗2(θL)) + γ1e

∗
1(θH) + γ2e

∗
2(θL)

−d
2

((e∗1(θH))2 + (e∗2(θL)2})] 1√
2πσ2

exp(− ε2

2σ2
ε

)dε

+
1

2
{
ˆ
− exp[−R(α+ β(θLe∗1(θL) + θHe∗2(θH)) + γ1e

∗
1(θL) + γ2e

∗
2(θH)

−d
2

((e∗1(θL))2 + (e∗2(θH)2})] 1√
2πσ2

ε

exp(− ε2

2σ2
ε

)dε.
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Since e∗1(θH) = e∗2(θH) and e∗1(θH) = e∗2(θH), then

ˆ
− exp[−R

∑
k∈{H,L}

{α+βθke∗(θk)+γe∗(θk)−d
2

(e∗(θk))2})] 1√
2πσ2

ε

exp(− ε2

2σ2
ε

)dε

Furthermore, by using Gauss integral, it can be rewritten as

− exp[−R(α− 1

2
Rβ2σ2

ε +
∑

k∈{H,L}

{βθke∗(θk) + γe∗(θk)− d

2
(e∗(θk))2}]

= u(α− 1

2
Rβ2σ2

ε +
∑

k∈{H,L}

{βθke∗j (θk) + γke∗j (θ
k)− d

2
(e∗j (θ

k))2}, 0, 0)

As a result, we obtain

CEbc = α− 1

2
Rβ2σ2

ε +
∑

k∈{H,L}

{βθke∗(θk) + γe∗(θk)− d

2
(e∗(θk))2}

Proof of proposition 1

Note that e∗(θi) = βθi+γ
d . Then, the principal’s problem that is given by (??)

can be rewritten as follows.

max
β,γ

∑
k∈{H,L}

{θke∗(θk)− d

2
(e∗(θk)2} − 1

2
Rβ2σ2

ε

= max
β,γ

β(θH)2 + γ

d
+
β(θL)2 + γ

d
− d

2
{(βθ

H + γ

d
)2 + (

βθL + γ

d
)2} − 1

2
Rβ2σ2

ε

= max
β,γ

1

2d
[β{(2− β)((θH)2 + (θL)2)− dRβσ2

ε }+ 2(1− β)γ(θH + θL)] (12)

By differentiating (??) with respect to γ, we obtain the first-oder condition for

γ. That is, γ∗ satisfies the following condition.

1

d
[(1− β)(θH + θL)− 2γ∗] = 0 (13)

By solving (??) with respect to γ, we obtain

γ∗ =
1

2
(1− β)(θH + θL) (14)

On the other hand, by differentiating (??) with respect to β, and then we obtain

the first-order condition for β. That is, β∗ satisfies the following condition.

1

d
[(1− β)(θH)2 + (θL)2 − γ(θH + θL) + dRβσ2

ε ] = 0 (15)

15



By solving (??) with respect to β, we obtain

β∗ =
(θH)2 + (θL)2 − γ(θH + θL)

(θH)2 + (θL)2 + dRσ2
ε

(16)

From (??) and (??)

β∗ =
(θH − θL)2

(θH − θL)2 + dRσ2
ε

, γ∗ =
d(θH + θL)Rσ2

ε

(θH − θL)2 + dRσ2
ε

. (17)

Note that 1
2 (θH + θL) = M and 4(θH − θL)2 = σ2

θ . Then, we can rewrite as

follows.

β∗ =
2σ2

θ

dRσ2
ε + 2σ2

θ

, γ∗ =
dMRσ2

ε

dRσ2
ε + 2σ2

θ

. (18)

Furthermore,

β∗ +
1

M
γ∗ =

2σ2
θ

dRσ2
ε + 2σ2

θ

+
1

M

dMRσ2
ε

dRσ2
ε + 2σ2

θ

= 1.

Proof of proposition 2

First, we prove that (??) must be hold.

By differentiating β∗ with respect to σε, then we have

∂β∗

∂σ2
ε

= − 2dRσ2
θ

(dRσ2
ε + 2σ2

θ)2
.

Note that we assume that d, R, σε and σ2
θ are strictry positive. It follows that

2dRσ2
θ > 0 and (dRσ2

ε + 2σ2
θ)2 > 0.

As a result, we otbain
∂β∗

∂σ2
ε

< 0.

Similarly,
∂β∗

∂σ2
θ

=
2dRσ2

ε

(dRσ2
ε + 2σ2

θ)2
> 0.

Furthermore,
∂β∗

∂R
= − 2dσ2

εσ
2
θ

(dRσ2
ε + 2σ2

θ)2
< 0.

Second, we prove that (??) must be hold. Note that we assume M also strictry

positive. Then, we have

∂γ∗

∂σ2
ε

=
2dMRσ2

ε

(dRσ2
ε + 2σ2

θ)2
> 0,

16



∂γ∗

∂σ2
θ

= − 2dMRσ2
ε

(dRσ2
ε + 2σ2

θ)2
< 0,

and
∂γ∗

∂R
=

2dMRσ2
εσ

2
θ)2

(dRσ2
ε + 2σ2

θ)2
> 0,

Proof of proposition 3

Note that E[e∗1(θ1) + e∗2(θ2)|θ] = e∗(θH) + e∗(θL). Then,

e∗(θH) + e∗(θL) =
βθH + γ

d
+
βθL + γ

d

=
2(Mβ + γ)

d

=
2

d
(

2Mσ2
θ

dRσ2
ε + 2σ2

θ

+
dMRσ2

ε

dRσ2
ε + 2σ2

θ

)

=
2M

d
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