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Stability of Sunspot Equilibria under Adaptive
Learning with Imperfect Information

Abstract

This paper investigates whether the stability of sunspot equilibria un-
der learning is affected by the imperfect information sets of exogenous
variables held by learning agents. It finds that imperfect information un-
der learning creates expectational frictions that make the adjustment of
expectations easy to converge. Then, the existence of imperfect informa-
tion has a positive effect on the stability of sunspot equilibria. Specif-
ically, the stability conditions are relaxed as the degree of information
imperfection (or the magnitude of the expectational frictions) increases.
The paper also finds that this effect is significant in calibrated New Key-
nesian models. Under highly imperfect information, sunspot equilibria
are stable if and only if the Taylor principle is violated, while under per-
fect information, implausible conditions are obtained. Our results suggest
that imperfect information under learning increases the possibility of self-
fulfilling fluctuations. The expectational frictions may help establish the
business cycle models that explain the recent global financial fluctuations.

JEL classification: C62; D82; D83; E32; E52

Keywords: Sunspot equilibria; Imperfect information; Stability; Adap-
tive learning; Expectational frictions; Taylor principle
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1 Introduction

Sunspot-driven business cycle models that are based on rational expecta-

tions (RE) are popular tools to account for the dynamics of business cycles

that are not justified by fundamental reasons alone. The US economy in

the pre-Volcker period is the most popular example of a business cycle

that is explained by self-fulfilling expectations that are driven by non-

fundamental reasons, or so-called ”sunspots” (see Benhabib and Farmer,

1994; Farmer and Guo, 1994). These expectations are considered to have

been supported by the Fed’s passive stance toward inflation (Clarida,

Gali, and Gertler, 2000; Lubik and Schorfheide, 2004).1

Models with sunspot equilibria also help investigate the recent global

financial fluctuations: for example, the US housing market in the middle

2000s (Kashiwagi, 2014), the Great Recession in the late 2000s (Farmer,

2012), and the European debt crisis in the early 2010s (Bacchetta, Tille,

and van Wincoop, 2012). In the theoretical literature, these phenomena

are described as self-fulfilling fluctuations caused by financial frictions

based on the imperfect information of fundamental variables (Benhabib

and Wang, 2013; Gertler and Kiyotaki, 2015; Benhabib, Dong, and Wang,

2018)

Accordingly, the dynamics of sunspot equilibria has been investigated

in alternative mechanisms of expectations formation. Sunspot equilibria

might not be attainable under reasonable expectations. To test the empir-

ical plausibility of these models, a strand of the literature investigates the

stability of sunspot equilibria under adaptive learning, which is to form

their forecasts by estimating econometric models without knowledge of

the economic structure (Evans and Honkapohja, 2001). Then, in New

Keynesian (NK) models, for example, the literature finds the monetary

policy rules that cause stable sunspot equilibria (Carlstrom and Fuerst,

2004; Honkapohja and Mitra, 2004; Evans and McGough, 2005b, 2010;

Airaudo and Zanna, 2010).

While the dynamics of sunspot equilibria have been investigated in

the adaptive learning framework, how the imperfect information of fun-

1Non-fundamental fluctuations under the passive stance of central banks have also
been suspected in the context of the EU economy during the 1980s and 1990s (Hirose,
2013) and the Chinese economy during the 1990s and 2000s (Zheng and Guo, 2013).
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damental variables affects the stability of sunspot equilibria has not been

fully clarified. Most of the learning literature assumes that agents have

perfect information sets of economic variables, which enable estimation of

the correctly specified econometric models that have the same form as RE

solutions. However, this is in contrast with the above RE literature con-

sidering sunspot equilibria with imperfect information and the evidence

of the imperfect information of fundamental variables.2 Rather, in the

learning framework, considering such imperfect information may be more

reasonable because it is often difficult to identify the processes of funda-

mental variables in the absence of knowledge of the economic structure.3

In this situation, agents’ forecasting models must be underparameterized

and sometimes mutually different, and misspecified expectations might af-

fect the dynamics of sunspot equilibria. To derive implications regarding

the recent financial turmoil, which might have occurred in the presence

of imperfect information, the stability of sunspot equilibria should be

investigated given the same information structure.

This paper investigates the stability of sunspot equilibria under adap-

tive learning with imperfect information. We incorporate the imperfect

information sets of exogenous variables held by learning agents into a

reduced-form linear expectational model and examine whether the sta-

bility conditions of sunspot equilibria are affected by the existence of im-

perfect information. By specifying the degree of imperfection in agents’

information sets, the paper shows the analytical relationship between the

degree of imperfection and the stability conditions.

Next, using a basic NK model, the paper explores how imperfect in-

formation performs in standard business cycle models. The learning lit-

erature has shown that sunspot equilibria in NK models are stable only

if the central bank follows the Taylor principle, which is to raise the

nominal interest rate actively in response to increases in economic vari-

2See Mankiw, Reis, and Wolfers (2003) and Madeira and Zafar (2015) for the evi-
dence of imperfect information. Beckworth and Hendrickson (2019) find that because
of imperfect information regarding output gap, its forecast error accounts for up to
13% of the fluctuations in the output gap.

3This difficulty is argued by Nakamura and Steinsson (2018), Giannone and Re-
ichlin (2006), and Alessi, Barigozzi, and Capasso (2011). The fact that the consensus
regarding the source of the Great Depression in the 1930s was only reached six decades
later, in the 1990s, is a classic example of this type of difficulty (see Eichengreen, 1992).
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ables (normally, the inflation rate).4 However, this conventional result

contradicts the aforementioned empirical evidence that during past non-

fundamental fluctuations, central banks took a passive stance toward in-

flation. This contradiction is called the stability puzzle and implies the

empirical implausibility of NK models.5 With this background, this pa-

per not only demonstrates the significance of imperfect information for

stability conditions imposed on monetary policy rules, but also exam-

ines whether imperfect information provides stability conditions that are

consistent with the empirical evidence.

This paper finds that imperfect information under learning creates

expectational frictions that make the adjustment of expectations sluggish

so that estimated parameters converge easily. As a result, the existence

of imperfect information has a positive effect on the stability of sunspot

equilibria. That is, their stability conditions are relaxed by the existence

of imperfect information and are more relaxed as the degree of information

imperfection (or the magnitude of the expectational frictions) increases.

Thus, even if sunspot equilibria are unstable under perfect information,

they can be stable under imperfect information.

This result suggests that imperfect information under learning raises

the possibility of self-fulfilling business cycle fluctuations. As is mentioned

above, relationships between imperfect information and sunspot equilib-

ria are emphasized in the recent RE literature, but most of them are

mainly supported by financial frictions owing to imperfect information,

which improve the stationarity of sunspot equilibria. In our model, by

contrast, the relationship is supported by the expectational frictions ow-

ing to imperfect information under learning, which improve the stability

of sunspot equilibria. These frictions may help characterize the dynamics

of non-fundamental fluctuations under reasonable expectations.

Next, in the NK model, this paper finds that imperfect information not

only relaxes stability conditions imposed on monetary policy rules, but

also makes those conditions consistent with the observations during past

4See Honkapohja and Mitra (2004), Evans and McGough (2005b), Airaudo and
Zanna (2010), and Airaudo, Nistico, and Zanna (2015).

5The stability puzzle was initially found in RBC models in the form that sunspot
equilibria in calibrated RBC models are always unstable under adaptive learning
(Branch and McGough, 2004; Evans and McGough, 2005a; Duffy and Xiao, 2007;
Ji and Xiao, 2018).
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business cycle fluctuations. In the absence of imperfect information, there

is an implausible result that sunspot equilibria are unstable if the central

bank is very passive in its response to economic variables. However, the

implausible result is reduced in the presence of imperfect information, and

if information is highly imperfect, sunspot equilibria are always stable in

the violation of the Taylor principle. This result is fully consistent with

past observations. Thus, imperfect information under learning can be an

important mechanism to establish empirically plausible sunspot-driven

business cycle models.

Our results reinforce the positive effect of imperfect information on

the stability of an equilibrium under learning. Nakagawa (2015) obtains

a similar result that the stability of a fundamental equilibrium is improved

by imperfect information. In addition, the Taylor principle is the sufficient

condition for the stability. Combined with these results, the present study

confirms that the expectational frictions caused by imperfect information

are robust both in fundamental and sunspot equilibria. Additionally,

the Taylor principle ensures that the fundamental equilibrium is uniquely

stable under learning.

This paper is closely related to the learning literature on the restricted

perceptions equilibrium (RPE), in which agents’ forecasting models are

underparameterized and sometimes heterogeneous. The RPE is first ana-

lyzed by Marcet and Sargent (1989a), who consider the information struc-

ture of the Lucas islands model, which covers a broad class of agents’

limited and mutually different information sets of economic variables.

However, the stability of the equilibrium under learning was beyond the

scope of their research.

While other studies focus on different information structures, Naka-

gawa (2015) simplifies Marcet and Sargent (1989a)’s model by limiting it

to the imperfect information of exogenous variables.6 In this structure,

the degrees of limitation and heterogeneity in agents’ information sets are

6Regarding the stability of sunspot equilibria, the literature considers the partial
or asymmetric information of exogenous variables (e.g., Branch, McGough, and Zhu,
2017), the asymmetric information of endogenous variables (e.g., Adam, Evans, and
Honkapohja, 2006), and the partial or asymmetric information of sunspot variables
(e.g., Guse, 2005; Berardi, 2009). However, no study considers Marcet and Sargent
(1989a)’s information structure, under which each agent has his/her own private in-
formation about fundamental variables as in the Lucas islands model.
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specified by model parameters so that the analytical relationship between

a general class of imperfect information of exogenous variables and the

stability of the fundamental equilibrium is obtained.7 However, sunspot

equilibria are not analyzed. The present study fills this gap to analyze the

recent financial fluctuations that are explained with a variety of imperfect

information.

The paper is structured as follows. The next section presents our

model and stationary sunspot equilibria attainable under rational expec-

tations. Section 3 provides a benchmark analysis under learning with

perfect information. Section 4 provides stability conditions under infor-

mation imperfection to clarify the effect of imperfect information on the

stability of sunspot equilibria. Section 5 applies our analytical results to

a basic NK model. Finally, the paper presents our conclusions and future

works.

2 Model

This section introduces a reduced-form linear expectational model. The

economy is represented by the dynamics of endogenous variables yt =

(y1t, · · · , ymt)
′ and serially correlated exogenous variables wt = (w1t, · · · , wnt)

′:

yt = BE∗
t yt+1 + Cwt, (1)

wt = Φwt−1 + vt. (2)

vt is the n × 1 vector of the innovations with mean zero that drive the

stochastic processes of wt. The standard deviation of wit for each i ∈
{1, · · · , n} is defined by σii > 0, and the correlation matrix of wt is

defined by Γ ≡ (
ρij

)
1≤i,j≤n

, in which ρij ∈ [0, 1] denotes the correlation

between wi and wj, and ρij = ρji and ρii = 1 for each i, j ∈ {1, . . . , n}.
The parameter B is the m×m coefficient matrix of E∗

t yt+1, C is the m×n

coefficient matrix of wt, and Φ is the n× n matrix of the autocorrelation

coefficient of wt. E∗
t is the operator of the expectation of yt+1 at time

7Our framework is different from the dynamic predictor selection model (Brock
and Hommes, 1997; Branch and Evans, 2006; Berardi, 2015), which assumes implicitly
homogeneity in agents’ information sets such that all agents choose among the same
list of econometric models.
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t, which is not necessarily rational. Several regularity assumptions are

imposed on B, Γ, and Φ (see Appendix A): in particular, Γ ≥ 0 and

Φ ≡ diag (ϕi)1≤i≤n ≥ 0 where 0 ≤ ϕi < 1 for all i.

In this model, we incorporate the positive feedback of expectations, that

is, the eigenvalues of B have all positive real parts. Using the notation

λ [X] that denotes the largest value of the real parts of the eigenvalues of

a matrix X, the positive feedback in this model is represented by

λ [−B] < 0. (3)

The positive feedback is a typical feature of calibrated business cycle

models (see NK models in Section 5.3, for example). By imposing the

restriction (3), we obtain the stability conditions that are satisfied in

calibrated models with the positive feedback.8

Under rational expectations (E∗
t = Et), if and only if there exist the

eigenvalues of matrix B outside the unit circle, the system (1)–(2) has

the non-explosive solution of the general form,

yt = B−1yt−1 − B−1Cwt−1 + ϵt, (4)

for agents’ forecast errors ϵt+1 ≡ yt+1−Etyt+1 which is an m×1 martingale

difference sequence vector and satisfies Etϵt+1 = 0. ϵt+1 is called a sunspot

and the solution (4) is called a stationary sunspot rational expectations

equilibrium. In this case, the equilibrium is indeterminate given an initial

state of wt.

The general form (4) can be transformed to a common factor (CF)

representation if and only if either of the non-explosive eigenvalues is real

(Evans and McGough, 2005c):

yt = c̄wt + d̄ξt, (5)

where

ξt = θ−1ξt−1 + εt, (6)

c̄ = Bc̄Φ + C, d̄ = sd̂. (7)
8The theoretical literature derives stability conditions that need the negative feed-

back of expectations, which contradicts the positive feedback in calibrated models
(Evans and Honkapohja, 2003a,b; Evans and McGough, 2005c; Shea, 2013, 2016; Be-
rardi, 2015). This contradiction is the reason for the stability puzzle in calibrated
models (see Evans and McGough, 2005a; Duffy and Xiao, 2007).

7



ξt and εt are the martingale difference sequences originating from sunspot

ϵt. θ is the real eigenvalue satisfying −1 < θ−1 < 1 such that yt and ξt are

stationary. d̄ is the product of an arbitrary real constant s and the real

eigenvector d̂ corresponding to the eigenvalue θ.9 E (wtεt) = E (wtξt) = 0

are assumed.

A necessary condition for the existence of this form of stationary

sunspot REEs is described as follows:

Lemma 1 In the model (1)–(2), there exist stationary sunspot rational

expectations equilibria of CF representation (5) only if

λ [B] > 1. (8)

That is, either of the eigenvalues of matrix B needs to have the real part

greater than one.

Our analysis will focus on the stability of the equilibria of CF represen-

tation (5) instead of the general form (4). This is because the instability

of the general form is found by Evans and McGough (2005c), and the

robustness of this result to the existence of imperfect information is con-

firmed in our supplementary analysis. On the other hand, the stability

of the form (5) is found by Evans and McGough (2005c), while its insta-

bility in models with the positive feedback of expectations is implied by

Duffy and Xiao (2007). Other mixed results are also provided in different

business cycle models.10

3 Sunspot equilibria with perfect informa-

tion

This section shows a benchmark analysis on the stability of sunspot equi-

libria with perfect information under learning. Readers who are familiar

9If there are two or more real eigenvalues outside the unit circle, there also exist
the other form of the CF representations (see Evans and McGough, 2005c).

10See Hirose (2008), Shea (2013), McGough, Meng, and Xue (2013), Airaudo (2013),
Arifovic, Bullard, and Kostyshyna (2013), and Berardi (2015).
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with the benchmark analysis may skip this section and directly go to

Section 4.

3.1 Adaptive learning

Suppose that agents do not have enough knowledge of the economic struc-

ture to coordinate on rational expectations. An alternative mechanism

to form their forecasts E∗
t yt+1 is by estimating econometric models with

available data up to time t, {y′
s, w

′
s, ξs}t

s=1.
11 Following the methodology

of the learning literature, agents are assumed to know the functional form

of sunspot equilibria (5) and estimate the perceived law of motion (PLM)

of the same form:

yt = cwt + dξt + et, (9)

where c is the m × n matrix of coefficients for wt, d is the m-vector of

coefficients for sunspot ξt, and et is the m-vector of error terms that are

perceived to be white noise.

Using the estimated parameters φ′ ≡ (c, d), agents form the forecast:

E∗
t yt+1 = cΦwt + θ−1dξt. (10)

The actual law of motion (ALM) of the economy is obtained by incorpo-

rating Eq. (10) into Eq. (1) as

yt = (BcΦ + C) wt + dξt. (11)

Note that θ−1Bd = d.

3.2 Dynamics of Parameters

In real-time learning, the parameters φ′
t = (ct, dt) estimated at time t are

the optimal linear projections of yt−1 on z′
t−1 ≡ (

w′
t−1, ξt−1

)
that satisfy

the following least-squares orthogonality condition:

Ezt−1 (yt−1 − φ′
tzt−1) = 0.

11Our analytical results are independent of whether contemporaneous endogenous
variables yt are used to form the forecast E∗

t yt+1, because the forecast (10) is not
determined by yt.
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Then, the local dynamics of φ′ are governed by the associated ordinary

differential equation (ODE) (see Evans and Honkapohja, 2001, chapter 6):

dφ

dτ
= T (φ) − φ, (12)

where τ denotes notional time and T (φ) is the mapping from the PLM

to the ALM:

T (φ) ≡ (
Tc (c) Td (d)

)
=

(
BcΦ + C d

)
.

If the ODE is locally asymptotically stable around the fixed point φ̄,

the parameters φt converge to the fixed point (7) under real-time learning,

and the economy is stable around a sunspot equilibrium (5). d̄ is arbitrary

so that there exists a continuum of sunspot equilibria.

3.3 Stability condition

The ODE (12) is locally stable if and only if the eigenvalues of the Jaco-

bians regarding c,

D (Tc (c) − c) = Φ ⊗ B − Imn,

have negative real parts:

λ [B] < λ [Φ]−1 . (13)

Combined with the stationary condition (8), the stability condition of

stationary sunspot equilibria is provided as follows:

Proposition 1 In the system (1)–(2) with perfect information, station-

ary sunspot equilibria (7) are locally stable under learning only if

1 < λ [B] < λ [Φ]−1 . (14)

Note that λ [Φ] = max {ϕi}1≤i≤n < 1.

The proposition implies that sunspot equilibria in calibrated business

cycle models tend to be unstable under perfect information. The pa-

rameter region (14) does not seem wide enough to include the values

10



of calibrated parameters. If the largest autocorrelation of fundamental

shocks (that is, λ [Φ]) is significantly large such as 0.9, then Eq. (14) is

1 < λ [B] < 1.11 · · · . This leads to most of the instability results (that is,

the stability puzzle) that have been observed in calibrated business cycle

models with perfect information (see Section 5.3).12

4 Sunspot equilibria with imperfect infor-

mation

In what follows, the assumption of perfect information is relaxed by in-

troducing the imperfect information of exogenous variables.

4.1 Imperfect information

To analyze a variety of the information structures of exogenous variables,

our model incorporates the following private information, which is con-

sidered in Nakagawa (2015):

Assumption 1 For each i ∈ {1, ..., n}, the evolution of the exogenous

variable {wis}t
s=1 is observable for agents of type i and unobservable for

agents of other types.

That is, each exogenous variable of the economy is privately observable for

a part of agents. Implicitly, it is assumed that different types cannot share

any information of unobservable variables. Then, agents of type i recog-

nize the stochastic characteristics of observable variable wit, but do not

recognize the characteristics of the unobservable variables {wjt}n
j=1,j ̸=i.

13

12The other reason is that most studies include constant terms in PLMs so that
sunspot equilibria are always unstable in models with the positive feedback of expecta-
tions. Evans and McGough (2005a) and Duffy and Xiao (2007) show the corresponding
instability results in RBC models.

13In particular, the stochastic distributions of {wj}n
j ̸=i, the correlations of exogenous

variables
{
ρij

}n

i,j=1,i̸=j
, and the number n of exogenous variables are unobservable for

other types of agents. If their information were common knowledge, agents could use it
in adaptive learning, which should be different from the form described in this paper.
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For simplicity, the population of each type is assumed to be the same at
1
n
.

This structure is originally considered in the Lucas island model and

analyzed under adaptive learning by Marcet and Sargent (1989a). This

type of private information describes a feature of the information of indi-

vidual fundamental shocks: for example, a preference shock possessed by

a household (see Allen and Gale, 2004) and the profitability of a borrower

in a financial market (see Stiglitz and Weiss, 1981).

The advantage of this structure in the analysis of learning is to cover

not only private information, but also a variety of the information struc-

tures of exogenous variables. For example, if n = 1 (no limitation) or

ρij = 1 (and hence ϕi = ϕj and wit

σii
=

wjt

σjj
) for all i, j (no heterogeneity),

the information sets of all types are essentially reduced to the perfect

ones in Section 3 so that the analysis of this section covers the bench-

mark analysis of Section 3 as a special case. In addition, a broad class of

imperfect information of exogenous variables considered in the literature

is reproduced by accommodating the characteristics of {wit}n
i=1 (here, n,{

ρij

}n

i,j=1
, and {ϕi, σii}n

i=1).
14 The number n of exogenous variables may

define the degree of limitation in the information set of each agent; the

larger n is, the more limited each information set is relative to the full

one.15 The value 1 − ρij (or the correlation ρij of the two exogenous

variables {wit, wjt} for each i, j ∈ {1, ..., n}) may define the degree of

the heterogeneity (or homogeneity) in the information sets of types i and

j; the greater 1 − ρij is, the more heterogeneous both information sets

are.16 Later, both degrees will be combined together to define the degree

of information imperfection with a single scalar measure.

14Nakagawa (2015) shows that this framework covers, for example, partial infor-
mation sets seen in the RPE literature, asymmetric information sets, and different
populations of the types of agents.

15For private information to exist for each type of agent, the number of unobservable
variables (n − 1) must be greater than the number of endogenous variables (m). For
example, if m = 2, n > 3 must hold.

16Although the degree of heterogeneity in the information sets of all types cannot
be represented by a single scalar measure, we will say ”the degree of heterogeneity in
the information sets of all types increases” if ρij falls for at least one (i, j) and falls or
remains the same for every (i, j).
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4.2 Heterogeneously misspecified learning

Let us describe adaptive learning by the agent of type i with the imperfect

information set {y′
s, wis, ξs}t

s=1, which is limited and different from the

information sets held by other types in terms of {wit}n
i=1. Let us assume

that the agent recognizes the correct form of sunspot equilibria (5), but

that the agent is constrained to specify an underparameterized PLM:17

yt = ciwit + diξt + eit. (15)

For simplicity, we assume that agents of all types believe the same sunspot

ξt. Using the estimated parameters, the forecast of agent i at time t is

formed as

E∗
ityt+1 = ciϕiwit + θ−1diξt, (16)

where E∗
it is the operator of forecasts formed by type i at time t.

The PLM and the forecast of each type are heterogeneously misspeci-

fied to the same degree as the degrees of information limitation and het-

erogeneity. The degree of misspecification in the PLM/forecast of each

type is specified one-to-one by the degree of limitation of each informa-

tion set (that is, n). The degree of heterogeneity in the PLMs/forecasts

of types i and j is specified one-to-one by the degree of heterogeneity of

information sets of both types (that is, 1 − ρij).

The forecast E∗
t yt+1 in Eq. (1) is determined by the average of the

forecasts of all types of the form (16). Following the same populations of

different types, let us assume that forecasts of different types {E∗
ityt+1}n

i=1

have equal contributions to the dynamics of the economy. Then, the

forecast E∗
t yt+1 is formulated as follows:

E∗
t yt+1 = cΦwt + θ−1dξt, (17)

where E∗
t is the operator of the average of heterogeneous forecasts E∗

t =
1
n

∑n
i=1 E∗

it. d ≡ 1
n

∑n
i=1 di is the average of the coefficient vectors for

all types, and c ≡ 1
n

(c1, · · · , cn) is the m × n matrix that combines the

17Note that in the presence of imperfect information, it is reasonable to include
yt−1 in the PLM (15) because uninformed agents extract some information about
unobservable variables from the process of yt. Our supplementary analysis finds that,
in our purely forward-looking model, the effect of imperfect information on the stability
is robust to the inclusion of yt−1 in the PLM (that is, the VAR(1) PLM).
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coefficient vectors {ci}n
i=1 of the PLMs of the form (15) for all types and

multiplies them by the proportion 1
n
.

The ALM is obtained by substituting Eq. (16) into the system (1)–(2):

yt = (BcΦ + C) wt + dξt. (18)

In this framework, there emerge frictions in the expectations forma-

tion. Imperfect information under learning causes the same degrees of

misspecification and heterogeneity in the PLMs of individual types. As a

result, given {ci}n
i=1, the aggregate forecast (17) is less responsive to the

evolutions of {wit}n
i=1 than those under perfect information. In response,

the adjustment of the economy (i.e., the ALM (18)) is also reduced.

4.3 Dynamics of Parameters

As in Section 3, the parameters φ′
it = (cit, dit) of type i are the opti-

mal linear projections of yt−1 on z′i,t−1 ≡ (
wi,t−1, ξi,t−1

)
that satisfy the

following least-squares orthogonality condition,

Ezi,t−1 (yt−1 − φ′
itzi,t−1) = 0,

such that the misspecification in the PLM (15) is not detected.

The local dynamics of φi in real-time learning is inferred from the

stochastic recursive algorithms of φi formulated by the PLM (15) and

the ALM (18). As a result, the dynamics of the parameters of all types

are represented by the dynamics of the aggregate parameters φ′ = (c, d),

which are governed by the following ODE:

dφ

dτ
= T (φ) − φ, (19)

where

T (φ) ≡ (
Tc (c) Td (d)

)
=

(
(BcΦ + C)

(
1
n
Ψ

)
d

)
,

Ψ ≡ diag (σii)1≤i≤n · Γ · diag (σii)
−1
1≤i≤n .

The derivation of the ODE is shown in Appendix B. Mapping T (φ) pro-

vides the coefficients of the forecasts of yt updated by agents of all types.
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The fixed points φ̄
′
=

(
c̄, d̄

)
are

c̄ = (Bc̄Φ + C)

(
1

n
Ψ

)
, d̄ = sd̂. (20)

If the ODE is locally stable around the fixed point φ̄, the aggregate pa-

rameters φt converge to the fixed point under real-time learning, and the

economy is determined at the equilibrium with Eq. (20). The fixed point

d̄ is arbitrary so that the sunspot shock ξt drives the economy arbitrarily.

Therefore, the sunspot equilibrium in the existence of imperfect infor-

mation is defined as a stochastic process for {yt}∞t=0 following the system

(1)–(2) given that {E∗
t yt+1}∞t=0 is the average of the forecasts formed by

the PLMs of the form (15) for all i with the parameters {φ′
i = (ci, di)}n

i=1

determined at the fixed point (20) of the ODE (19).

4.4 Stability condition

The stability of sunspot equilibria is subject to whether the aggregate

parameters φ′ ≡ (c, d) converge to the fixed point. They are locally stable

if and only if the eigenvalues of the Jacobian of the associated ODE (19)

regarding c,

D (Tc (c) − c) =

(
Φ

(
1

n
Ψ

))′
⊗ B − Imn,

have all negative real parts:

λ [B] < µλ [Φ]−1 , (21)

where

µ ≡ λ [Φ]

λ
[
Φ

(
1
n
Ψ

)] =
λ [Φ]

λ
[
Φ

(
1
n
Γ
)] .

Thus, combined with the stationary condition (8), the stability con-

dition under imperfect information is given as follows:

Proposition 2 In the system (1)–(2) with imperfect information, sta-

tionary sunspot equilibria (20) are locally stable under learning only if

1 < λ [B] < µλ [Φ]−1 . (22)
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Comparing with the stability condition under perfect information (14),

this result clarifies that the effect of imperfect information is represented

by the parameter µ. In our mechanism, imperfect information under

learning creates the expectational frictions that make the forecast and the

ALMs less responsive to the evolutions of exogenous variables. Thus, the

parameter µ represents the magnitude of the frictions caused by imperfect

information.

4.5 Effect of imperfect information

Here, let us find the relationship between imperfect information and the

stability of sunspot equilibria.

The parameter µ includes all the parameters of the degrees of infor-

mation limitation and heterogeneity (n and
{
1 − ρij

}n

i,j=1
). Those pa-

rameters have the following relationships (see Nakagawa, 2015, Lemma 1

& Remark 1):

Lemma 2 For each n ≥ 1 and i, j ∈ {1, · · · , n},

1. µ ≥ 1 with equality iff n = 1 or ρij = 1 for all i, j;

2. dµ

d(1−ρij)
≥ 0 for all i, j;

3. dµ
dn

≥ 0 if ϕi = ϕ ∈ [0, 1) and ρij = ρ ∈ [0, 1] for all i, j and i ̸= j.

Lemma 2.1 means that µ = 1 under perfect information (n = 1 or ρij = 1

for all i, j) and µ > 1 under imperfect information. Lemmas 2.2 & Lemma

2.3 mean that the parameter µ has nonnegative monotonic relationships

with
{
1 − ρij

}n

i,j=1
and, in the case of similar exogenous variables, n.

Thus, the parameter µ defines the degree of information imperfection of

the whole economy, which increases the magnitude of the expectational

frictions.

Thus, the existence of imperfect information under learning has a

positive effect on the stability of sunspot equilibria as follows:
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Proposition 3 The stability condition (22) is relaxed upwards by the

existence of imperfect information.

More specifically, this effect is raised by the degree of information

imperfection as follows:

Proposition 4 For each n ≥ 1 and i, j ∈ {1, · · · , n}, the stability condi-

tion (22) is relaxed upwards by an increase in the degree of information

imperfection (or the magnitude of the expectational frictions) µ, which is

increased or unchanged by an increase in the degree of heterogeneity 1−ρij

in the information sets of types i and j for each i, j or by an increase in

the degree of limitation n of the information set of each type if exogenous

variables have the same stochastic characteristics as in Lemma 2.3.

That is, the degrees of information heterogeneity and limitation have

nonnegative effects on the stability.

The mechanism of imperfect information under learning that creates

the expectational frictions is intuitively apparent. Under imperfect infor-

mation, the aggregate forecast and the economy are less responsive to the

evolutions of exogenous variables than under perfect information. At the

end of the period, the sluggish adjustment of the economy reduces the

updating of the parameters in PLMs. In the next period, this reduction

in the updating gives a feedback to reduce the adjustment of the economy.

The interaction between the adjustment of the economy and the updating

of the parameters makes the estimated parameters converge easily so that

the stability of sunspot equilibria is improved.

The expectational frictions are illustrated in brief calibrations. Fig-

ure 1 shows the calibrations of the updating of the parameter cit and the

adjustment process of endogenous variable yt in response to a one-time

evolution of w1,0 = 1 under different degrees of information heterogene-

ity. Here, with the degree of limitation fixed as n = 10, the degree of

heterogeneity 1 − ρ represents the degree of information imperfection of

the economy and the magnitude of the expectational frictions. We find

that the response of yt to the evolution of w1 are reduced as the degree of

heterogeneity increases. This reduction makes the updating of ct sluggish
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Figure 1: The updating of the parameter cit and the adjustment processes
of yt under different degrees of information heterogeneity. Consider the
univariate case (m = 1) and assume B = 1.5, Ci = 1, E (w2

it) = 1 for all i,
E

(
ξ2

t

)
= 1, and the same stochastic characteristics of exogenous variables

as in Lemma 2.3: ϕi = 0.9 for all i and ρij = ρ for all i ̸= j. The initial
values of parameters (c, d) are set at (0, 1). The degree of limitation (n)
is fixed at 10. Then, the stability condition (22) is 1 − ρ > 0.29.

so as to converge. On the other hand, if 1− ρ is lower than the threshold

of the stability condition, the response of yt and the updating of ct are

so large as to explode. In this way, the expectational frictions affect the

stability of sunspot equilibria.

Note that the expectational frictions have no effect on the stability if

all agents include constant terms in their PLMs (e.g., yt = ai + ciwit +

diξt + eit).
18 This case can occur if all agents have no knowledge of

the steady state of yt, which corresponds to the fixed points of {ai}n
i=1.

However, the observable steady state is a standard assumption in business

cycle models.19 Further, the frictions hold the effect if there are at least

18In this case, λ [B] < 1 is added as the convergence condition of ai, which is more
restrictive than Eq. (21) enough to eliminate the effect of the expectational frictions.

19In NK models, for example, the steady state of output is assumed to be known by
agents so that the central bank can control the nominal interest rate in response to
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a small proportion of agents who know the steady state.20 Thus, our

results are likely to be robust in reasonable situations.

4.6 Implications

These results provide several implications. First, our results suggest that

the imperfect information of fundamental shocks raises the possibility

of self-fulfilling business cycle fluctuations. Relationships between them

have been shown in a bunch of the RE literature, where financial frictions

due to imperfect information, for example, improve the stationarity of

self-fulfilling expectations (Benhabib and Wang, 2013; Gertler and Kiy-

otaki, 2015; Benhabib, Dong, and Wang, 2018). Our results, on the other

hand, show that the expectational frictions based on imperfect informa-

tion under learning improve the stability of those expectations.

Secondly, our results imply that the time-variation in the information

structure can drive boom-bust cycles. Proposition 4 shows the positive re-

lationship between the degree of imperfection in agents’ information sets

and the stability of sunspot equilibria. That is, self-fulfilling fluctuations

may occur when agents’ information sets become imperfect and must end

when information is recovered close to perfect. Such time-variations are

observed in structural changes of the economy. Recent technological (or

financial) innovations, for example, were initially unfamiliar to people (or

familiar to only a part of people) and to become familiar gradually.21

an output gap, which is the difference between actual output and the steady state of
output. The steady state of the inflation rate is also determined by the central bank
as the inflation target and reported publicly.

20If all agents include constant terms in their PLMs, the convergence condition of
ai is λ [B] < 1 (see footnote 18). On the other hand, if the proportion of the agents
who know the steady state and do not include constant terms is p ∈ [0, 1], the above
convergence condition is modified to λ [B] < (1 − p)−1 while the condition (21) of c is
unchanged. Notice that if p > 1 − λ [Φ], the convergence conditions are represented
by Eq. (21) which is affected by imperfect information. When, for example, ϕi = 0.9
for all i, this case occurs if p > 1 − λ [Φ] = 0.1 (that is, at least ten percent of agents
know the steady state).

21The synchronizations of technological or financial innovations and changes in the
information structure are observed before past non-fundamental fluctuations. For
example, Greenwood and Nagel (2009) find that inexperienced investors play a role
in the formation of the US IT bubbles in the late 1990s. Mizen (2008) argues that
before the US subprime bubble in the 2000s, market investors did not fully understand
the risk inherent in new financial products and mortgage lenders also did not have
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Our results suggest that those informational structural changes might

have caused boom-bust cycles by generating time-variations in informa-

tion structures.

Thirdly, in such a time-variation in the information structure, a given

government policy could fail to prevent self-fulfilling fluctuations under

high imperfection even if the policy succeeded in preventing them under

perfect information. Under high imperfection, the government should

adopt a restrictive policy that increases λ [B], that is, the size of the

expectational feedback.

Finally, our results also propose the mechanism of the expectational

frictions caused by imperfect information as an important devise to es-

tablish plausible sunspot-driven business cycle models. In the literature,

there is the stability puzzle that sunspot equilibria in calibrated business

cycle models are always unstable under learning. This implies the empir-

ical implausibility of those models. However, Proposition 4 implies that

in the presence of highly imperfect information, the stability condition

of sunspot equilibria might be satisfied in the ranges of calibrated pa-

rameters. Thus, incorporating the expectational frictions may describe

non-fundamental fluctuations in plausible frameworks of expectations.

5 Application to a NK model

This section shows how the expectational frictions caused by imperfect

information perform in a NK model. Further, let us discover whether

they provide the results that are consistent with the historical evidence.

5.1 NK model

The NK model is

xt = −α (it − E∗
t πt+1) + E∗

t xt+1, (23)

πt = κxt + βE∗
t πt+1. (24)

sufficient information about rapidly increasing subprime borrowers. Nakagawa and
Uchida (2011) suggest that the Japanese financial deregulation since the early 1980s
contributed to the asset-price bubble in the late 1980s by inducing banks to follow the
lending behavior of banks that were more informed about new borrowers in the early
to mid 1980s.
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The model has three endogenous variables: output gap xt, the inflation

rate πt, and the nominal interest rate it. Eq. (23) is a log-linearized in-

tertemporal Euler equation that is derived from the households’ optimal

choice of consumption. Eq. (24) is a Phillips curve with the forward-

looking component that is derived from the optimizing behavior of mo-

nopolistically competitive firms with Calvo price setting. α > 0, κ > 0,

and 0 < β < 1 are assumed.

For robustness, let us consider three types of nominal interest rate

rules that are popular in the literature: a contemporaneous nominal in-

terest rate rule (see Lubik and Schorfheide, 2004),

it = φππt + φxxt + wt, (25)

a forward -looking rule (McCallum and Nelson, 1999),

it = φπE∗
t πt+1 + φxE

∗
t xt+1 + wt, (26)

and a semi-forward -looking rule (Clarida, Gali, and Gertler, 2000),

it = φπE∗
t πt+1 + φxxt + wt, (27)

where wt is the monetary policy shock. The parameters φπ and φx are

controlled by the central bank, and φπ, φx ≥ 0 are assumed.

To introduce the imperfect information sets of exogenous variables, the

policy shock wt is assumed to be the aggregation of individual monetary

policy shocks: wt ≡ ∑n
i=1 wit. These shocks describe, for example, the

preference shocks of different policy board members of the central bank.22

The shock wit for each i ∈ {1, · · · , n} follows a persistent process: wit =

ϕiwi,t−1 + vit, where 0 ≤ ϕi < 1 and the disturbance term vit has a

zero mean. The correlation of wit and wjt is ρij ≥ 0 for each i, j ∈
{1, · · · , n}. If wit for each i is observable for all agents, they specify

correctly specified PLMs and homogeneous forecasts as in Eqs. (9)–(10).

If wit for each i is privately observable for 1
n

of agents and unobservable for

other agents, they specify underparameterized PLMs and heterogeneous

forecasts as in Eqs. (15)–(16). Following the assumptions given by Branch

22In this example, each policy rule may be interpreted as the average of the policy
reaction functions of different members, and wt in each equation as the average of
exogenous beliefs of different members (see Riboni and Ruge-Murcia, 2008).
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and McGough (2009), the aggregate forecasts (E∗
t xt+1, E

∗
t πt+1) are given

by the averages of the forecasts of all types {(E∗
itxt+1, E

∗
itπt+1)}n

i=1 as in

Eq. (17).23

In this model, the stationary condition (Lemma 1) is described as

follows:

Lemma 3 In the NK model (23)–(24) with any of the nominal interest

rate rules (25)–(27), there exist stationary sunspot equilibria if and only

if

κ (φπ − 1) + φx (1 − β) < 0. (28)

The proof is shown in Appendices C, D, and E. Note that the stationary

condition (28) is not only the necessary, but also the sufficient condition

because Eq. (28) ensures that the eigenvalues of the coefficient matrix are

all real. Notice also that the lemma holds under any of the policy rules.

Eq. (28) corresponds to the violation of the so-called Taylor principle

that prevents stationary sunspot equilibria under rational expectations.24

5.2 Stability conditions

Let us obtain stability conditions imposed on the monetary policy rules.

First, consider the contemporaneous rule (25). The stability condition is

provided by Proposition 2:

Proposition 5 In the NK model (23)–(24) with the contemporaneous

rule (25), stationary sunspot equilibria are locally stable under learning if

and only if

− 1

α

(
1 − µ−1λ [Φ]

) (
1 + ακ + αβφx − βµ−1λ [Φ]

)
< κ (φπ − 1)+φx (1 − β) < 0.

(29)
23Individual monetary policy shocks {wit}n

i=1 keep the decision rules of agents un-
derlying the NK model identical. Then, the NK model holds the original form while
the aggregate forecasts are replaced with the average of the forecasts of different agents
(see Branch and McGough, 2009).

24Without the positive feedback restriction (3), the violation of the Taylor principle
(28) is a sufficient, but not necessary condition for indeterminacy under the forward-
and semi-forward-looking rule. See Bullard and Mitra (2002, Propositions 1 & 4) and
Woodford (2003, Propositions 4.3 & 4.5) in detail.
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Figure 2: Stability condition under the contemporaneous rule.

The proof is shown in Appendix C. The left-hand-side comes from the

convergence condition.

The stability condition (29) is described in Figure 2. We find that

sunspot equilibria are stable only if the policy rule is passive such that it

violates the Taylor principle. This feature is consistent with the historical

evidence that during the past business cycles that were suspected to be

non-fundamental, central banks took the passive stance toward economic

variables.

The figure demonstrates that the expectational frictions caused by im-

perfect information expand the region of stability downwards. According

to Proposition 4, the lower bound of the stability condition (29) receives

the downward effect that increases with the magnitude of the frictions µ.

In this sense, those frictions raise the possibility of sunspot equilibria in

the NK model as well.

In addition, the expectational frictions improve the plausibility of NK

models with sunspot equilibria. In the absence of information imperfec-

tion, the parameter region of stability has the implausible part where

sunspot equilibria are unstable if the rule is highly passive. This part is
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reduced with the magnitude of the frictions. If information is highly im-

perfect, the implausible part is perfectly eliminated so that the violation

of the Taylor principle is not only the necessary, but also sufficient condi-

tion for the stability. This result is further consistent with the historical

evidence. Thus, those frictions can be an important devise to characterize

the dynamics of past non-fundamental fluctuations.

Finally, these results also provide the policy implication that the Tay-

lor principle is important to prevent self-fulfilling fluctuations in the pres-

ence of imperfect information. Without imperfection, the principle is not

a necessary condition for preventing stable sunspot equilibria. However,

the principle becomes more important as the degree of imperfection in-

creases, and if agents’ information sets are highly imperfect, the principle

is exactly the necessary (and sufficient) condition for preventing them.

Nakagawa (2015) shows in the same framework that the Taylor principle

is the sufficient condition for the stability of the fundamental equilibrium.

Thus, the present result implies that if the central bank follows the Taylor

principle, the fundamental equilibrium is the unique stable equilibrium

under adaptive learning.

These results are robust to the type of a policy rule. Let us also

provide stability conditions under the forward-looking rule (26) and the

semi-forward-looking rule (27).

Proposition 6 In the NK model (23)–(24) with the forward-looking rule

(26), stationary sunspot equilibria are locally stable under learning if and

only if

−(1 − µ−1λ [Φ]) (1 − β (1 − αφx) µ−1λ [Φ])

αµ−1λ [Φ]
< κ (φπ − 1)+φx (1 − β) < 0.

(30)

The proof is shown in Appendix D.

Proposition 7 In the NK model (23)–(24) with the semi-forward-looking

rule (27), stationary sunspot equilibria are locally stable under learning if
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and only if

−(1 − µ−1λ [Φ]) (1 + αφx − βµ−1λ [Φ])

αµ−1λ [Φ]
< κ (φπ − 1) + φx (1 − β) < 0.

(31)

The proof is shown in Appendix E.

These conditions have the same features as the one under the con-

temporaneous rule (Propositions 5). Then, independent of the type of a

policy rule, the expectational frictions caused by imperfect information

raise the possibility of sunspot equilibria in the NK model and improve

its empirical plausibility, and under the Taylor principle, the fundamental

equilibrium is the unique stable equilibrium.

These results are also consistent with the empirical evidence that non-

fundamental fluctuations were observed under passive contemporaneous

and semi-forward-looking rules (Clarida, Gali, and Gertler, 2000; Lubik

and Schorfheide, 2004), while most of the learning literature shows stable

sunspot equilibria only under active forward-looking rules (Honkapohja

and Mitra, 2004; Evans and McGough, 2005b; Airaudo and Zanna, 2010;

Airaudo, Nistico, and Zanna, 2015).25

5.3 Calibrations

Finally, let us calibrate stability conditions in order to examine the sig-

nificance of the expectational frictions in calibrated NK models.

Calibrated parameters (α, κ, β) in Table 1 are utilized. The number

of monetary policy shocks {wit}n
i=1 are set as n = 10.26 For simplicity, let

us assume the same stochastic characteristics of the shocks as in Lemma

2.3. The autocorrelation ϕ is set as ϕ = 0.9.27 Under these settings, let

25Nakagawa (2019) shows that sunspot equilibria under active forward-looking rules
exhibit oscillatory adjustment processes, which are emphasized by Duffy and Xiao
(2007) to be inconsistent with the empirical evidence of business cycles that exhibited
monotonic or cyclic processes.

26This number refers to the numbers of the members of the US Federal Open Market
Committee (12 members), the ECB Executive Board (6), and the BOJ Policy Board
(9).

27The serial correlation of a monetary policy shock is estimated to be 0.92 by Rude-
busch (2002) using US data during 1987-1999. Similar results are obtained by Consolo
and Favero (2009) using the data of the pre-Volcker period. Carrillo, Feve, and Math-
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Table 1: Structural & policy parameters

Structural Policy
α κ β Type φπ φx

Lubik and Schorfheide (2004) 1/1.45 0.77 0.99 c 0.77 0.17
McCallum and Nelson (1999) 0.164 0.3 0.99 f 0.87 0.17

Clarida, Gali, and Gertler (2000) 4 0.075 0.99 s 0.83 0.27

Note: The structural and policy parameters are given by the ”Pre-Volcker
(Prior I)” in Table 3 of Lubik and Schorfheide (2004), Section 1.5 of McCallum
and Nelson (1999), and the baseline result in Table II of Clarida, Gali, and
Gertler (2000).

Table 2: Eigenvalues

Eigenvalues
Lubik and Schorfheide (2004) Bc 1.1767 0.5513
McCallum and Nelson (1999) Bf 1.0640 0.9045

Clarida, Gali, and Gertler (2000) Bs 1.0357 0.4595

us calibrate the effect of the expectational frictions (here, heterogeneity

1 − ρ) on stability conditions.

Table 2 shows the eigenvalues of coefficient matrices (Bc, Bf , Bs)

using the calibrated parameters. All of the cases satisfy the stationary

condition (8) so that these calibrated models are capable of exhibiting

plausible sunspot equilibria of CF representation.

Figure 3 shows calibrated stability conditions under the contempora-

neous rule and the different degrees of information heterogeneity 1 − ρ.

The parameters of Lubik and Schorfheide (2004) are used, and their es-

timates of (φπ, φx) are also shown.

The figure shows that the expectational frictions have a significant

effect on the stability of sunspot equilibria. The region of stability is ex-

panded dramatically by an increase in the degree of imperfection. This

suggests that given a policy rule, even a small change in the information

eron (2007) estimate the serial correlation to be 0.87 ∼ 0.95 using US data during
1960-2002. Feve, Matheron, and Poilly (2007) obtain similar results using European
data during 1987-2004.
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structure can be a crucial reason for the outset of self-fulfilling fluctu-

ations. Past boom-bust cycles might be explained by structural shocks

that temporarily changed information structures.

In addition, those frictions well contribute to improving the plausi-

bility of calibrated NK models with sunspot equilibria. In the absence

of imperfection (1 − ρ = 0), sunspot equilibria are unstable under most

passive rules, and the Lubik and Schorfheide (2004)’s estimates are out of

the region of stability. These results reject the plausibility of their model.

But, this implausibility is perfectly eliminated when ρ ≤ 0.5 (that is,

1 − ρ ≥ 0.5).28 Thus, the expectational frictions can resolve the stability

puzzle that has been open in the learning literature.

These results are robust in the other calibrated NK models. In our

supplementary analysis, stability conditions in the McCallum and Nelson

(1999)’s model with the forward-looking rule and in the Clarida, Gali,

and Gertler (2000)’s model with the semi-forward-looking rule are also

calibrated. Their results are similar to above.29

In total, our calibrations confirm that the expectational frictions caused

by imperfect information provide the significant effect in popular cali-

brated NK models. In the presence of imperfect information, the Taylor

principle is important to prevent self-fulfilling fluctuations. This result is

independent of the type of a policy rule.

6 Conclusion

This paper investigated the stability of sunspot equilibria under adaptive

learning when agents’ information sets of exogenous variables are imper-

fect. Sunspot-driven business cycle models are popular tools to account

for non-fundamental business cycle fluctuations, and the recent global

financial turmoil is described as arising from self-fulfilling fluctuations

28Bhattacharjee and Holly (2015, Fig. 1) estimate the interactions of the board
members of the central bank using the data of the Bank of England. The average of
the estimated coefficients of the regressions between policy decisions of the members
is 0.32, which may be close to correlations of their preferences.

29In contrast to the Lubik and Schorfheide (2004)’s results, the estimates (φπ, φx)
in these two models are always in the regions of stability. Regarding Clarida, Gali,
and Gertler (2000), Honkapohja and Mitra (2004) show that sunspot equilibria are
unstable in their calibrated model.
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Figure 3: Stability conditions under the contemporaneous rule (Parame-
ters: Lubik and Schorfheide, 2004).
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based on the imperfect information of fundamental variables. While sev-

eral studies have investigated the dynamics of sunspot equilibria in the

learning framework, it has not been fully clarified how imperfect infor-

mation affects the stability of sunspot equilibria. This study fills this

gap, and using the NK model, examines whether imperfect information

provides the stability conditions that are consistent with the empirical

evidence.

The paper finds that imperfect information under learning creates ex-

pectational frictions that make the updating of expectations easy to con-

verge. The expectational frictions have a positive effect on the stability

of sunspot equilibria. Specifically, their stability conditions are relaxed as

the degree of information imperfection (or the magnitude of the frictions)

increases. In the NK model, expectational frictions provide the stability

condition that is consistent with the empirical evidence: Sunspot equilib-

ria are stable if and only if the Taylor principle is violated. These results

suggest that those frictions raise the possibility of self-fulfilling fluctua-

tions. In addition, the frictions may contribute to establishing empirically

plausible business cycle models, and the Taylor principle is essential for

preventing non-fundamental fluctuations.

Future works are expected as follows. A technical work will gener-

alize our model to one that includes lagged endogenous variables. Our

model is purely forward-looking to obtain analytical results; however,

most business cycle models are also backward-looking. While McGough

and Nakagawa (2016) find numerically that the positive effect of imper-

fect information is robust to the backward-lookingness of models, it is

also necessary to examine the robustness analytically.

A second work is expected to reexamine stabilization policies provided

by the existing learning literature. For example, several studies clarify the

mechanism of a liquidity trap, its stability, and optimal policies to escape

from it. However, our results imply that those policies could be ineffective

in the presence of imperfect information that improves the stability of self-

fulfilling fluctuations. In that case, it would be necessary to propose more

stringent policies to escape the trap.

The last possible work is to account for the mechanism of past non-

fundamental fluctuations that might have been driven by imperfect infor-

mation. Many studies are seen in the RE literature particularly after the
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recent financial turmoil, but not enough in the learning literature. To this

background, this study suggests in the learning framework that imperfect

information under learning creates expectational frictions that affect the

dynamics of self-fulfilling fluctuations. Using this mechanism, we could

discover why the past non-fundamental fluctuations were observed after

there occurred, for example, technological or financial innovations, which

were initially unfamiliar to people. Further, we could account for past

boom-bust cycles by relating them with the time-variation in the infor-

mation structure.

7 Appendix

A Regularity Assumptions

Assumption 2

1. det (B) ̸= 0, det (Im − B) ̸= 0, and det (Imn − Φ ⊗ B) ̸= 0.

2. Φ is a diagonal and nonnegative matrix whose diagonal elements exist in
the interval [0, 1).

3. Γ is a nonnegative matrix, in which 0 ≤ ρij ≤ 1 for each i, j ∈ {1, ..., n}.

Assumption 2.1 ensures the forward-lookingness of the model and prevents
the possibility that the non-explosive fundamental REE could be indeterminate
(see Honkapohja and Mitra, 2006, Proposition 1).

The diagonal representation of Φ in Assumption 2.2 simplifies the analysis
by equating the eigenvalues of Φ with its diagonal elements existing in the
interval [0, 1). Note that this assumption is not crucial for our analysis, because
even if Φ were originally nondiagonal, Eq. (1) could be transformed to an
equation that includes a diagonal autocorrelation matrix by premultiplying
Eq. (1) by the n × n matrix formed from the eigenvectors of Φ. The diagonal
elements in the interval [0, 1) ensure the stationarity of wt.

Neither is Assumption 2.3 crucial for our analysis, because any linear model
can be transformed to the system with Γ ≥ 0. For example, if any ρij is negative
in an original model, this negative correlation can be transformed to be positive
by changing the sign of wi (or wj) and redefining the correlation between −wi

and wj as ρij ≥ 0. Applying this transformation to all negative correlations,
the original model is transformed to the system with Γ ≥ 0.
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B Derivation of ODE under heterogeneously

misspecified learning

The ODE under heterogeneously misspecified learning is obtained by accom-
modating the global convergence of the ODE associated with an RPE in Evans
and Honkapohja (2001, Section 13.1.1). Agent i for each i ∈ {1, . . . , n} forms
E∗

ityt+1 by using real-time learning with the PLM (15) and the information set
{ys, wis, ds}t

s=1. We assume the t-dating of expectations considered by Evans
and Honkapohja (2001, chapter 10): coefficient parameters φit at time t are es-
timated with past data up to time t−1, {ys, wis, ds}t−1

s=1, and E∗
ityt+1 is formed

with φit and the contemporaneous data {yt, wit, dt}. The estimates of the co-
efficient parameters φ′

it = (cit, dit) are given by the least-squares projection
of yt−1 on z′i,t−1 =

(
wi,t−1, ξt−1

)
: Ezi,t−1

(
yt−1 − φ′

itzi,t−1

)′ = 0. Then, the
updating rule of φit is shown by the RLS representation:

φit = φi,t−1 + t−1R−1
it zi,t−1

(
yt−1 − φ′

i,t−1zi,t−1

)′
, (B.1)

Rit = Ri,t−1 + t−1
(
zi,t−1z

′
i,t−1 − Ri,t−1

)
, (B.2)

where Rit = t−1
∑t

s=1 zi,s−1z
′
i,s−1, which is the updating of the matrix of the

second moment of zit.
The stochastic recursive algorithm (SRA) for φit for each i is obtained by

substituting the ALM (18) into Eq. (B.1):

φit = φi,t−1 + t−1R−1
it zi,t−1

((
w′

t−1 ξt−1

) (
Sc,t−1 dt−1

)′ − z′i,t−1φi,t−1

)
,

where we denote Sct ≡ BctΦ + C, ct ≡ 1
n (c1t, ..., cnt), and dt ≡ 1

n

∑n
i=1 dit.

To obtain the ODEs for φi associated with the SRA, we have to calculate
the unconditional expectations of the updating terms in the SRA. The conver-
gence of the SRA is analyzed by Marcet and Sargent (1989b) in the stochastic
approximation approach, which is also introduced by Evans and Honkapo-
hja (2001, chapter 6). Denote the operator E as the expectation of variables
for φi fixed, taken over the invariant distributions of wt. Then, by letting
Eziz

′
j = limt→∞ Ezitz

′
jt for each i, j ∈ {1, ..., n}, the unconditional expectation

of the updating term in Eq. (B.1) is transformed to

E
[
R−1

it zi,t−1

((
w′

t−1 ξt−1

) (
Sc,t−1 dt−1

)′ − z′i,t−1φi,t−1

)]
= R−1

i

(
Eziz

′
i

) [(
0
d

)
+

(
Eziz

′
i

)−1
(

ωi1 · · · ωin

0 · · · 0

)
S′

c − φi,t−1

]
,

where Sc ≡ BcΦ + C, c ≡ 1
n (c1, ..., cn), d ≡ 1

n

∑n
i=1 di, ωij is the covariance of

wi and wj such that ωij ≡ σiiρijσjj for each i, j. When ζ denotes the variance

of ξt, Eziz
′
i =

(
ωii 0
0 ζ

)
because of the assumption E (wtξt) = 0. Next, the
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expectation of the updating term in Eq. (B.2) is given by Eziz
′
i − Ri. Hence,

the ODEs for φi and Ri associated with the SRA are obtained as

dφi

dτ
= R−1

i

(
Eziz

′
i

) (
T (φi)

′ − φ′
i

)′
, (B.3)

dRi

dτ
= Eziz

′
i − Ri, (B.4)

where
T (φi)

′ ≡ (
ω−1

ii

(
ωi1 · · · ωin

)
S′

c d
)
.

Furthermore, because Ri and Eziz
′
i in Eq. (B.4) are asymptotically equal,

R−1
i (Eziz

′
i) in Eq. (B.3) globally converges to unity. Hence, the stability of

the ODE for φ′
i = (ci, di) in Eq. (B.3) is determined by smaller differential

equations:
dφi

dτ
= T (φi) − φi. (B.5)

In the same manner, smaller ODEs for the parameters
{
φj

}n

j ̸=i
are obtained.

The ODEs (B.5) for all i are represented by the ODEs for the aggregate
parameters (c, d) in Eq. (19) as follows. First, the ODEs for all dis have the
same form, and d is an arithmetic average of all dis. Then, the convergence
property of d is equivalent to that of di for each i; the ODEs for all dis are
represented by a single ODE for d that has the same form as that for di:

dd

dτ
= Td (d) − d,

where Td (d) ≡ Sd. Next, the ODEs for all cis are represented by a single
ODE for the aggregate parameter c. If the ODEs of ci in Eq.(B.5) for all i are
multiplied by 1

n and combined in a single 1 × n matrix, the single ODE for c
is obtained by:

dc

dτ
= Tc (c) − c,

where

Tc (c) ≡ (
1
nω−1

11

(
ω11 · · · ω1n

)
S′

c · · · 1
nω−1

nn

(
ωn1 · · · ωnn

)
S′

c

)′
= (BcΦ + C)

(
1
n

Ψ
)

,

and

Ψ ≡


1 ω12ω

−1
22 · · · ω1nω−1

nn

ω21ω
−1
11 1 · · · ω2nω−1

nn
...

...
. . .

...
ωn1ω

−1
11 ωn2ω

−1
22 · · · 1


= diag (σii)1≤i≤n · Γ · diag (σii)

−1
1≤i≤n .

The derivation is complete.
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C Proof of Proposition 5

Consider the NK model (23)–(24) and the contemporaneous rule (25), and let
us obtain the parameter region for matrix Bc to satisfy the stationary condition
(8) and the stability condition (21).

The NK model with the contemporaneous rule is represented in the follow-
ing form: [

xt

πt

]
= BcEt

[
xt+1

πt+1

]
−

[
1 + αφx αφπ

−κ 1

]−1 [
α
0

]
wt,

where

Bc ≡
[

1 + αφx αφπ

−κ 1

]−1 [
1 α
0 β

]
.

First, the complement of the stationary condition (8) is λ [Bc − I2] ≤ 0:
tr (Bc − I2) ≤ 0 and det (Bc − I2) ≥ 0. That is,

κ (φπ − 1) + φx (1 − β) ≥ 0, (C.1)

κ (φπ − 1) + φx (1 − β) ≥ −1 − β + ακ + αβφx

2α
. (C.2)

Eq. (C.2) is redundant by Eq. (C.1) and 1 − β > 0. Thus, the stationary
condition is

κ (φπ − 1) + φx (1 − β) < 0. (C.3)

Note that in this region, the eigenvalues of matrix Bc are all real as they
are

1
2 (αφx + ακφπ + 1)

×
(

(ακ + αβφx + 1 + β) ±
√

(ακ + αβφx + 1 − β)2 − 4αβ (κ (φπ − 1) + φx (1 − β))
)

.

Next, the stability condition (21) is λ
[
Bc − µλ [Φ]−1 I2

]
< 0: tr

(
Bc − µλ [Φ]−1 I2

)
<

0 and det
(
Bc − µλ [Φ]−1 I2

)
> 0. Both conditions provide

κ (φπ − 1) + φx (1 − β) > − 1
α

(
1 − µ−1λ [Φ]

) (
1 − βµ−1λ [Φ] + ακ + αβφx

)
(C.4)

−µ−1λ [Φ]
2α

(
1 − βµ−1λ [Φ] + ακ + αβφx + β

(
1 − µ−1λ [Φ]

))
,

κ (φπ − 1) + φx (1 − β) > − 1
α

(
1 − µ−1λ [Φ]

) (
1 − βµ−1λ [Φ] + ακ + αβφx

)
. (C.5)

Eq. (C.4) is redundant by Eq. (C.5) and µλ [Φ]−1 > 1.
Therefore, the combination of Eqs. (C.3) and (C.5) provides Eq. (29).
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D Proof of Proposition 6

Consider the NK model (23)–(24) and the forward-looking rule (26), and let us
obtain the parameter region for matrix Bf to satisfy the stationary condition
(8) and the stability condition (21).

The NK model with the forward-looking rule is represented in the following
form: [

xt

πt

]
= BfEt

[
xt+1

πt+1

]
− α

[
1
κ

]
wt,

where

Bf ≡
[

1 0
−κ 1

]−1 [
1 − αφx −α (φπ − 1)

0 β

]
.

First, the complement of the stationary condition (8) is λ [Bf − I2] ≤ 0:
tr (Bf − I2) ≤ 0 and det (Bf − I2) ≥ 0. That is,

κ (φπ − 1) + φx (1 − β) ≥ −1 − β + αβφx

α
, (D.1)

φx (1 − β) + κ (φπ − 1) ≥ 0. (D.2)

Eq. (D.1) is redundant by Eq. (D.2) and 1 − β > 0. Thus, the stationary
condition is

κ (φπ − 1) + φx (1 − β) < 0. (D.3)

Note that in this region, the eigenvalues of matrix Bf are all real as they
are

1
2

(1 + β − ακ (φπ − 1) − αφx)

±1
2

√
(1 − β + ακ (φπ − 1) + αφx)2 − 4α (κ (φπ − 1) + φx (1 − β)).

Next, the stability condition (21) is λ [Bf ] < µλ [Φ]−1: tr
(
Bf − µλ [Φ]−1 I2

)
<

0 and det
(
Bf − µλ [Φ]−1 I2

)
> 0. Both conditions provide

κ (φπ − 1) + φx (1 − β) > − (
1 − µ−1λ [Φ]

) 1 − β (1 − αφx) µ−1λ [Φ]
αµ−1λ [Φ]

,(D.4)

κ (φπ − 1) + φx (1 − β) > −1 − β (1 − αφx) µ−1λ [Φ]
αµ−1λ [Φ]

− 1 − µ−1λ [Φ]
αµ−1λ [Φ]

.(D.5)

Eq. (D.5) is redundant by Eq. (D.4) and µλ [Φ]−1 > 1.
Therefore, the combination of Eqs. (D.3) and (D.4) provides Eq. (30).
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E Proof of Proposition 7

Consider the NK model (23)–(24) and the semi-forward-looking rule (27), and
let us obtain the parameter region for matrix Bs to satisfy the stationary
condition (8) and the stability condition (21).

The NK model with the semi-forward-looking rule is represented in the
following form:[

xt

πt

]
= BsEt

[
xt+1

πt+1

]
− α

[
1 + αφx 0

−κ 1

]−1 [
1
κ

]
wt,

where

Bs ≡
[

1 + αφx 0
−κ 1

]−1 [
1 −α (φπ − 1)
0 β

]
.

First, the complement of the stationary condition (8) is λ [Bs − I2] ≤ 0:
tr (Bs − I2) ≤ 0 and det (Bs − I2) ≥ 0. That is,

κ (φπ − 1) + φx (1 − β) ≥ −1 − β + αφx

α
, (E.1)

κ (φπ − 1) + φx (1 − β) ≥ 0. (E.2)

Eq. (E.1) is redundant by Eq. (E.2). Thus, the stationary condition is

κ (φπ − 1) + φx (1 − β) < 0. (E.3)

Note that in this region, the eigenvalues of matrix Bs are all real as they
are

1
2αφx + 2

((1 + β + αφx) − α (κ (φπ − 1) + φx (1 − β)))

± 1
2αφx + 2

√
((1 + β + αφx) − α (κ (φπ − 1) + φx (1 − β)))2 − 4β (1 + αφx).

Next, the stability condition (21) is λ [Bs] < µλ [Φ]−1: tr
(
Bs − µλ [Φ]−1 I2

)
<

0 and det
(
Bs − µλ [Φ]−1 I2

)
> 0. Both conditions provide

κ (φπ − 1) + αφx (1 − β) > α−1
(
β −

(
2µλ [Φ]−1 − 1

)
(1 + αφx)

)
,(E.4)

κ (φπ − 1) + φx (1 − β) > −
(
1 − µ−1λ [Φ]

) (
1 − βµ−1λ [Φ] + αφx

)
αµ−1λ [Φ]

(E.5)

Eq. (E.4) is redundant by Eq. (E.5) and µλ [Φ]−1 > 1.
Therefore, the combination of Eqs. (E.3) and (E.5) provides Eq. (31).
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