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Abstract

This paper considers an implementation problem with bounded rationality of the agents. Bounded
rationality presented here means that the agent might choose the agent’s best response which is
different from the agent’s dominant strategy. To describe such a behavior, this paper introduces
a new notion of equilibrium, called (n− k)-dominant strategy Nash equilibrium, in which at most
k ∈ {0,1, . . . ,n} boundedly rational agents might choose their best responses which are different from
their dominant strategies and at least (n− k) rational agents choose their dominant strategies. In ad-
dition, to show what a socially optimal outcome collectively chosen under the existence of boundedly
rational agents, this paper introduces a new notion of implementation, called k-secure implementa-
tion, which is double implementation in dominant strategy equilibria and (n− k)-dominant strategy
Nash equilibria. In specific environments, majority rule satisfies k-secure implementability, but not
secure implementability (Saijo, T., T. Sjöström, and T. Yamato (2007) “Secure Implementation,”
Theoretical Economics 2, pp.203-229) which is equivalent to n-secure implementability.
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1 Introduction

In social choice theory, strategy-proofness is a standard condition for strategic non-manipulability. 1

This condition requires that truthful revelation is a dominant strategy in the direct revelation mechanism
associated with a social choice function satisfying strategy-proofness (strategy-proof mechanism). A
social choice function is a function which associates each agents’ preferences with an outcome. The
direct revelation mechanism associated with a social choice function is a mechanism such that a strategy
is revealing a preference and an outcome is assigned by the associated social choice function depend-
ing on revealed preferences. Strategy-proofness is also a standard condition in implementation theory
because it is necessary for dominant strategy implementation, known as the revelation principle for
dominant strategy implementation (Dasgupta, Hammond, and Maskin, 1979). 2 Dominant strategy im-
plementation requires that the set of outcomes achieved by dominant strategy equilibria coincides with
the set of outcomes assigned by the social choice function. Mizukami and Wakayama (2007) and Saijo,
Sjöström, and Yamato (2007) independently showed that the social choice function is dominant strategy
implementable by the direct revelation mechanism associated with it if and only if it satisfies strategy-
proofness and weak non-bossiness (Mizukami and Wakayama, 2007; Saijo, Sjöström, and Yamato,
2007).

Dominant strategy implementation is attractive because dominant strategy equilibrium does not re-
quire any strategic coordination among the agents to achieve itself. This attraction depends on the as-
sumption that each agent chooses the agent’s dominant strategy to induce the agent’s most preferred
outcome if there is a dominant strategy equilibrium. Although this assumption is reasonable when the
indifference in preferences is not allowed for each agent, it is questionable whether this assumption is
reasonable when the indifference in preferences is allowed for some agent because there might be the
agent’s best response which is different from the agent’s dominant strategy. 3 This assumption is a suf-
ficient condition for guaranteeing that each agent seeks the agent’s most preferred outcome, but not a
necessary condition, because the agent might be able to induce such an outcome by choosing the agent’s
best response which is different from the agent’s dominant strategy.

Several experimental results also questioned whether the above assumption about the agents’ behav-
iors is reasonable. They showed that there are several subjects who do not reveal their true preferences
in strategy-proof mechanisms. 4 On the other hands, they showed that some of the subjects reveal their
preferences which are their best responses to other agents’ revelations. On the basis of such experimental
results in addition to the theoretical question about the agents’ behaviors, this paper reconsiders strategy-
proof mechanisms in terms of the assumption about bounded rationality of the agents, that is, this paper

1See Barberà (2011), Bossert and Weymark (2008), and Salles (2014) for basic ideas and recent developments of social
choice theory.

2See Baliga and Sjöström (2008), Corchón (2007), Jackson (2014), Maskin (2008) for basic ideas and recent developments
of implementation theory.

3Note that strategy-proofness requires that truthful revelation is a dominant strategy for each agent in the direct revelation
mechanism associated with a social choice function satisfying strategy-proofness, but not preclude the existence of other best
responses including dominant strategies which are different from truthful revelation. See Mizukami and Wakayama (2007) and
Saijo, Sjöström, and Yamato (2007) for multiple equilibrium problems with dominant strategy implementation.

4See Attiyeh, Franciosi, and Isaac (2000), Cason, Saijo, Sjöström, and Yamato (2006), and Kawagoe and Mori (2001) for
experiments on the pivotal mechanism (Clarke, 1971). In addition, see Kagel, Harstad, and Levin (1987) and Kagel and Levin
(1993) for experiments on second-price auction.
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considers the possibility that some agent chooses the agent’s best response which is different from the
agent’s truthful revelation, like satisficing (Simon, 1947, 1956), in construction of strategy-proof mech-
anisms. This paper defines such an agent as a boundedly rational agent in contrast to a rational agent
who reveal the agent’s true preference in the strategy-proof mechanism.

This paper closely relates to those of Saijo, Sjöström, and Yamato (2007) who considered a im-
plementation problem with the rationality of the agents on the basis of the above experimental results.
Many strategy-proof mechanisms have multiple Nash equilibria when the indifference in preferences is
allowed. Such equilibria might achieve a socially non-optimal outcome in contrast to truthful revelations
which achieve a socially optimal outcome. 5 Saijo, Sjöström, and Yamato (2007) pointed out the exis-
tence of such Nash equilibria as the cause for the ineffectiveness of strategy-proof mechanisms in exper-
iments and introduced secure implementation which is double implementation (Maskin, 1985) in dom-
inant strategy equilibria and Nash equilibria. In addition, Saijo, Sjöström, and Yamato (2007) showed
that the social choice function is securely implementable if and only if it satisfies strategy-proofness
and the rectangular property (Saijo, Sjöström, and Yamato, 2007). 6 On the basis of this characteri-
zation, several researchers have studied the possibility of secure implementation in the following envi-
ronments: voting environments (Saijo, Sjöström, and Yamato, 2007; Berga and Moreno, 2009), public
good economies (Saijo, Sjöström, and Yamato, 2007; Nishizaki, 2013, 2018a), pure exchange economies
(Nishizaki, 2014), production economies (Saijo, Sjöström, and Yamato, 2007; Kumar, 2013; Nishizaki
2018b), allotment economies (Bochet and Sakai, 2009), economies with indivisible private goods and
monetary transfer (Fujinaka and Wakayama, 2008), queueing problems (Nishizaki, 2012), Shapley-Scarf
housing markets (Fujinaka and Wakayama, 2011), and school choice (Mizukami and Wakayama, 2017).
These studies mostly indicated that secure implementability is so strong and there is rarely a non-trivial
securely implementable social choice function. 7

In response to bounded rationality of the agents and the difficulty of secure implementation, several
researchers might think that dominant strategy implementation should be replaced by other notion such as
Nash implementation. However, other notion of implementation also has a problem with strategic coordi-
nation among the agents to establish an associated equilibrium. Together with this coordination problem
in mind, this paper introduces an intermediate notion between dominant strategy implementation and
secure implementation in terms of the rationality of the agents, called k-secure implementation. This
notion is double implementation in dominant strategy equilibria and (n−k)-dominant strategy Nash
equilibria which is introduced in this paper in terms of the rationality of the agents. In an environment
with n ≥ 2 agents, a (n− k)-dominant strategy Nash equilibrium is a Nash equilibrium in which at most
k ∈ {0,1, . . . ,n} boundedly rational agents might choose their best responses which are different from

5Repullo (1985) showed that if the social choice function is dominant strategy implementable by an indirect mechanism, but
not the direct revelation mechanism associated with it, then the indirect mechanism does not implement it in Nash equilibria.
This means that the mechanism which implements the social choice function in dominant strategy equilibria might have Nash
equilibria which do not achieve a socially optimal outcome. See Saijo, Sjöström, and Yamato (2003) for the example.

6See Mizukami and Wakayama (2017) for an alternative characterization of secure implementability in terms of restricted
monotonicity (Mizukami and Wakayama, 2017) which is stronger than Maskin monotonicity (Maskin, 1977, 1999) by defini-
tion. In environments with partially honest agents, Saporiti (2014) showed that strategy-proofness is a necessary and sufficient
condition for secure implementability.

7The exception was shown by Saijo, Sjöström, and Yamato (2007) in public good economies, Nishizaki (2014) in pure
exchange economies, Saijo, Sjöström, and Yamato (2007), Kumar (2013), and Nishizaki (2018b) in production economies.
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their dominant strategies and at least (n− k) rational agents choose their dominant strategies. This no-
tion is equivalent to dominant strategy equilibrium if k = 0, that is, all the agents are rational and choose
their dominant strategies. This implies that k-secure implementation is equivalent to dominant strategy
implementation if k = 0. On the other hand, this notion is equivalent to Nash equilibrium if k = n, that
is, similar to Saijo, Sjöström, and Yamato (2007), all the agents might be boundedly rational and choose
their best responses which are different from their dominant strategies. This implies that k-secure imple-
mentation is equivalent to secure implementation if k = n. If 1 ≤ k ≤ n− 1, then k-dominant strategy
Nash equilibrium is an intermediate notion between dominant strategy equilibrium and Nash equilibrium
and k-secure implementation is also an intermediate notion between dominant strategy implementation
and secure implementation. k-secure implementation is attractive theoretically and practically for the
following reasons: (i) if k ≤ n−1, then this notion is in general weaker than secure implementation and
there might be a non-trivial k-securely implementable social choice function by the associated direct rev-
elation mechanism, (ii) this notion solves coordination problems because dominant strategy equilibrium
plays a role of focal point (Schelling, 1960), and (iii) this notion reflects bounded rationality of the actual
agents in some degree because several subjects choose their best responses which are different from their
truthful revelations in experiments.

In general environments, this paper shows that the social choice function is k-securely implementable
by the direct revelation mechanism associated with it if and only if it satisfies strategy-proofness and
the k-rectangular property which is introduced in this paper as an intermediate notion between weak
non-bossiness which is a necessary condition for dominant strategy implementability by the associated
direct revelation mechanism and the rectangular property which is a necessary condition for secure im-
plementability. In addition, this paper investigates k-secure implementability by the associated direct
revelation mechanism in binary voting environments and shows that majority rule is k-securely imple-
mentable, but not securely implementable, when the number of boundedly rational agents k is less than
na(u)− (n/2), where na(u) is the number of agents who prefer a to another outcome at the profile of
utility functions for all the agents u.

This paper also closely relates to those of Eliaz (2002) who considered a implementation problem
with the rationality of the agents in term of the number of irrational agents. Eliaz (2002) considered the
possibility that some agent, called a faulty agent, chooses the agent’s any strategy in contrast to a bound-
edly rational agent presented here, who might choose the agent’s best response which is different from the
agent’s dominant strategy. On the basis of this possibility, Eliaz (2002) introduced k-fault tolerant im-
plementation and characterized k-fault tolerantly implementable social choice correspondences. 8 This
notion is defined as the implementation in k-fault tolerant Nash equilibria which are an intermediate
notion between dominant strategy equilibria and Nash equilibria. In addition, k-fault tolerant implemen-
tation requires that any deviation from the k-fault tolerant Nash equilibrium by faulty agents achieves a
socially optimal outcome. k-fault tolerant implementation is equivalent to Nash implementation if k = 0
and in general stronger than dominant strategy implementation if k = n−1 because (n−1)-fault tolerant

8In addition, Eliaz (2002) showed a mechanism which k-fault tolerantly implements the constrained Walrasian allocation
in pure exchange economies with n ≥ 2 agents when the number of faulty agents lie between 0 and (1/2)n− 1. Mandler
(2014) also studied the faultiness of the agents in pure exchange economies. Mandler (2014) introduced an efficiency condition
independent of the number of faulty agents and showed a mechanism which implements such efficient allocations in a variant
of Nash equilibria.
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implementation requires dominant strategy implementation and that any deviation from the dominant
strategy equilibrium by at most (n−1) faulty agents also achieves a socially optimal outcome. This im-
plies that (n−1)-fault tolerant implementation is also in general stronger than k-secure implementation
for each k ∈ {0,1, . . . ,n− 1} by definition because such deviations include (n− k)-dominant strategy
Nash equilibria for each k ≤ n−1.

The remainder of this paper is organized as the following six sections. Section 2 introduces the basic
notation and definitions. In addition, the notion of equilibrium is introduced in this section. Especially,
the rationality of the agents and the relationship between (n− k)-dominant strategy Nash equilibrium
and k-fault tolerant Nash equilibrium are discussed in Subsection 2.3. Section 3 introduces the notion of
implementation including k-secure implementation and k-fault tolerant implementation. Section 4 shows
a characterization of k-securely implementable social choice functions by the associated direct revelation
mechanism respectively in general environments. In addition, Section 5 shows specific environments in
which majority rule is k-securely implementable, but not securely implementable. The results on the
relationship between the k-rectangular property and strong non-bossiness and the relationship between
the k-rectangular property and the rectangular property are presented in Appendix.

2 Model

The model presented here mostly follows those of Saijo, Sjöström, and Yamato (2007). The major
difference between the two models depends on their assumption about the rationality of the agents.
By introducing secure implementation, Saijo, Sjöström, and Yamato (2007) implicitly assumed that all
of the agents might be boundedly rational and choose their best responses which are different from
their dominant strategies even though they can choose their dominant strategies. On the other hand, by
introducing (n−k)-dominant strategy Nash equilibrium in Subsection 2.3, this paper explicitly assumes
that some of the agents might be boundedly rational and choose such best responses although other
rational agents precisely choose their dominant strategies. 9

2.1 Basic Notation and Definitions

For each sets X ,Y , “X ⊆Y ” means that “X is a subset of Y ” and “X ⊂Y ” means that “X is a proper subset
of Y ”. For each set X , “|X |” means “the cardinality of X”.

There are n≥ 2 agents who collectively choose an outcome. Let I ≡{1, . . . ,n} be the set of the agents
and A be the set of the outcomes. Each agent has a preference for the outcomes, which is represented by
an utility function defined on A. For each i ∈ I, let ui : A → R be an utility function for agent i and Ui

be the set of utility functions for agent i. For each N ⊆ I, let uN ≡ (ui)i∈N be a profile of utility functions
for the agents in the set of agents N and UN ≡ ∏i∈N Ui be the set of profiles of utility functions for the
agents in the set of agents N. In addition, let u ≡ uI and U ≡UI .

A socially optimal outcome is characterized by a social choice function defined on U . Let f : U → A
be a social choice function. For each u ∈U , let f (u) ∈ A be the socially optimal outcome assigned by

9Introducing a notion of equilibrium is a way of describing a behavioral principle of the agents. Other way of describing
such a principle is introducing a choice function for an agent, which assigns an outcome to each element in the power set of
outcomes. See de Clippel (2014) and Korpela (2012) for implementation theory based on choice functions.
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the social choice function f at the profile of utility functions for all the agents u.
An outcome is collectively chosen by all the agents through a mechanism. Let Γ ≡ (S,g) be a

mechanism defined as follows.

(i) For each i∈ I, let si be a strategy for agent i under the mechanism Γ and Si be the set of strategies
for agent i under the mechanism Γ. For each N ⊆ I, let sN ≡ (si)i∈N be a profile of strategies for
the agents in the set of agents N under the mechanism Γ and SN ≡ ∏i∈N Si be the set of profiles of
strategies for the agents in the set of agents N under the mechanism Γ. In addition, let s ≡ sI and
S ≡ SI .

(ii) Let g : S → A be the outcome function under the mechanism Γ. For each s ∈ S, let g(s) ∈ A be
the outcome assigned by the mechanism Γ at the profile of strategies for all the agents s.

Let Γ f ≡ (U ,g f ) be the direct revelation mechanism associated with a social choice function f such
that g f = f .

2.2 Basic Notion of Equilibrium

This paper focuses on bounded rationality of the agents under a mechanism with complete information.
Each rational agent is assumed to choose the agent’s best response, especially the agent’s dominant
strategy when feasible. On the other hand, each boundedly rational agent is assumed to choose the
agent’s best response which might be different from the agent’s dominant strategy even though the agent
can choose it. To describe such an assumption in implementation problems, this subsection introduces
dominant strategy equilibrium and Nash equilibrium.

For each u ∈U and each i ∈ I, the strategy si ∈ Si is a dominant strategy for agent i in the mecha-
nism Γ at the profile of utility functions u if and only if for each s′i ∈ Si and each s′I\{i} ∈ SI\{i},

ui(g(si,s′I\{i})) ≥ ui(g(s′i,s
′
I\{i})).

For each u ∈ U and each i ∈ I, let DSi(Γ,u) ⊆ Si be the set of dominant strategies for agent i in the
mechanism Γ at the profile of utility functions u.

Definition 1. For each u ∈U , the profile of strategies s ∈ S is a dominant strategy equilibrium in the
mechanism Γ at the profile of utility functions u if and only if

si ∈ DSi(Γ,u) for each i ∈ I.

For each u ∈U , let
DSE(Γ,u) ≡ ∏

i∈I
DSi(Γ,u)

be the set of dominant strategy equilibria in the mechanism Γ at the profile of utility functions u.
For each u∈U , each i∈ I, and each sI\{i} ∈ SI\{i}, the strategy si ∈ Si is a best response for agent i to

the profile of strategies for other agents sI\{i} in the mechanism Γ at the profile of utility functions
u if and only if for each s′i ∈ Si,

ui(g(si,sI\{i})) ≥ ui(g(s′i,sI\{i})).
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For each u ∈ U , each i ∈ I, and each sI\{i} ∈ SI\{i}, let BRi(Γ,u;sI\{i}) ⊆ Si be the set of best responses
for agent i to the profile of strategies for other agents sI\{i} in the mechanism Γ at the profile of utility
functions u.

Definition 2. For each u ∈U , the profile of strategies s ∈ S is a Nash equilibrium in the mechanism Γ

at the profile of utility functions u if and only if

si ∈ BRi(Γ,u;sI\{i}) for each i ∈ I.

For each u ∈U , let
NE(Γ,u) ≡ ∏

i∈I
BRi(Γ,u;sI\{i})

be the set of Nash equilibria in the mechanism Γ at the profile of utility functions u.

2.3 Bounded Rationality of Agents

Several researchers have described boundedly rational agents from various perspectives. Especially,
Eliaz (2002) focused on the number of irrational agents, similar to this paper. This subsection introduces
the main notion of equilibrium presented here and discusses the relationship between it and the notion of
equilibrium introduced by Eliaz (2002).

2.3.1 (n−k)-Dominant Strategy Nash Equilibrium

Under the mechanism in which there is a dominant strategy equilibrium at the profile of utility functions,
implementation theory mostly assumes that all the agents are rational and they choose their dominant
strategies. Although this assumption is reasonable when the indifference in preferences is not allowed
for each agent, it is questionable whether this assumption is reasonable when the indifference in pref-
erences is allowed for some agent because there might be the agent’s best response which is different
from the agent’s dominant strategy. In addition, it is observed that several subjects does not choose their
dominant strategies even though they can choose them in several experiments. Alternatively, some of
them choose their best responses which are different from their dominant strategies. On the basis of
such theoretical question and experimental results, this paper assumes that there might be several bound-
edly rational agents who choose their best responses which are different from their dominant strategies.
This assumption is described as the following notion of equilibrium, called (n−k)-dominant strategy
Nash equilibrium, defined as an intermediate notion between dominant strategy equilibrium and Nash
equilibrium.

This paper assumes that there are at most k ∈ {0,1, . . . ,n} boundedly rational agents. In addition, it
is assumed that the boundedly rational agents might choose their best responses which are different from
their dominant strategies.

Definition 3. For each k ∈ {0,1, . . . ,n} and each u ∈ U , the profile of strategies s ∈ S is a (n−k)-
dominant strategy Nash equilibrium in the mechanism Γ at the profile of utility functions u if and
only if there is K ⊆ I with |K| ≤ k such that

si ∈ BRi(Γ,u;sI\{i}) for each i ∈ K and s j ∈ DS j(Γ,u) for each j ∈ I \K.
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In Definition 3, K is the set of boundedly rational agents and I \K is the set of rational agents. At the
(n−k)-dominant strategy Nash equilibrium, although at least (n−k) rational agents in I \K choose their
dominant strategies, at most k boundedly rational agents in K might choose their best responses which
are different from their dominant strategies.

By definition, (n− k)-dominant strategy Nash equilibrium is equivalent to dominant strategy equi-
librium if k = 0 and Nash equilibrium if k = n. If 1 ≤ k ≤ n− 1, then (n− k)-dominant strategy Nash
equilibrium is an intermediate notion between Nash equilibrium and dominant strategy equilibrium. In
addition, (n−k)-dominant strategy Nash equilibrium is in general stronger than (n−k′)-dominant strat-
egy Nash equilibrium if k < k′ by definition. In fact, Example 1 shows these relationships.

Example 1. We consider the following three-person game: I ≡ {1,2,3}, S1 ≡ {U ,D}, S2 ≡ {L,R},
S3 ≡ {A,B}, and the payoffs are given as follows.

A L R

U 2, 2, 2 1, 2, 1

D 2, 1, 1 1, 1, 1

B L R

U 2, 2, 1 1, 1, 1

D 1, 1, 1 1, 1, 1

where the i-th coordinate of each profile of payoffs means agent i’s payoff. This game has the following
five Nash equilibria: (U, L, A), (D, L, A), (U, R, A), (D, R, A), and (D, R, B). Especially, (U, L, A) is
the unique (weakly) dominant strategy equilibrium. In this game, we find that

(i) (U, L, A), (D, L, A), (U, R, A), (D, R, A), and (D, R, B) are 0-dominant strategy Nash equilibria,

(ii) (U, L, A), (D, L, A), (U, R, A), and (D, R, A) are 1-dominant strategy Nash equilibria,

(iii) (U, L, A), (D, L, A), and (U, R, A) are 2-dominant strategy Nash equilibria, and

(iv) (U, L, A) is the unique 3-dominant strategy Nash equilibria.

For each k ∈ {0,1, . . . ,n} and each u ∈U , let

(n− k)DSNE(Γ,u) ≡
∪

K⊆I : |K|≤k

{
∏
i∈K

BRi(Γ,u;sI\{i})× ∏
j∈I\K

DS j(Γ,u)

}

be the set of (n− k)-dominant strategy Nash equilibria in the mechanism Γ at the profile of utility func-
tions u. Note that nDSNE(Γ,u) = DSE(Γ,u) and 0DSNE(Γ,u) = NE(Γ,u) for each u ∈U .

2.3.2 Relationship between (n−k)-Dominant Strategy Nash Equilibrium and k-Fault Tolerant
Nash Equilibrium

In implementation problems, Eliaz (2002) described irrational agents, called faulty agents, as the agents
who are more irrational than boundedly rational agents presented here. Each faulty agent is assumed to
behave in any possible manner, that is, the faulty agent might not even choose the agent’s best response.
To counteract the influence exerted by such a behavior, Eliaz (2002) introduced k-fault tolerant Nash
equilibrium.

Eliaz (2002) assumed that each rational agent considers that there are at most k ∈ {0,1, . . . ,n− 1}
faulty agents other than the agent. 10 In addition, it is assumed that at most k faulty agents choose their

10Eliaz (2002) called a rational agent by a non-faulty agent.
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any strategies respectively. For each u ∈U , each i ∈ I, each k ∈ {0,1, . . . ,n−1}, each K ⊆ I with |K| ≤ k,
and each sI\{K∪{i}} ∈ SI\{K∪{i}}, the strategy si ∈ Si is a k-fault tolerant best response for agent i to the
profile of strategies for other rational agents sI\{K∪{i}} in the mechanism Γ at the profile of utility
functions u if and only if for each s′i ∈ Si and each s′K ∈ SK ,

ui(g(si,sI\{K∪{i}},s′K)) ≥ ui(g(s′i,sI\{K∪{i}},s′K)).

In the definition of k-fault tolerant best response, K is the set of faulty agents and I \{K∪{i}} is the set of
rational agents other than agent i ∈ I. k-fault tolerant best response requires that agent i has no incentive
to deviate from the strategy given the strategies of other “rational” agents in I \{K ∪{i}} in contrast to
best response for agent i to the profile of strategies for “all” other agents. By definition, k-fault tolerant
best response is equivalent to best response if k = 0 and dominant strategy if k = n−1. If 1 ≤ k ≤ n−2,
then k-fault tolerant best response is an intermediate notion between best response and dominant strategy.
In addition, k-fault tolerant best response is in general weaker than k′-fault tolerant best response if k < k′

by definition. For each u ∈ U , each i ∈ I, each k ∈ {0,1, . . . ,n− 1}, each K ⊆ I with |K| ≤ k, and each
sI\{K∪{i}} ∈ SI\{K∪{i}}, let kFT BRi(Γ,u;sI\{K∪{i}}) ⊆ Si be the set of k-fault tolerant best responses for
agent i to the profile of strategies for other rational agents sI\{K∪{i}} in the mechanism Γ at the profile of
utility functions u.

Definition 4. For each k ∈ {0,1, . . . ,n− 1} and each u ∈ U , the profile of strategies s ∈ S is a k-fault
tolerant Nash equilibrium in the mechanism Γ at the profile of utility functions u if and only if for
each K ⊆ I with |K| ≤ k,

si ∈ kFT BRi(Γ,u;sI\{K∪{i}}) for each i ∈ I.

In Definition 4, K is the set of faulty agents and I \K is the set of rational agents. At the k-fault
tolerant Nash equilibrium, although at least (n− k) rational agents in I \K choose their best responses
mutually, at most k faulty agents in K choose their any possible strategies.

Remark 1. At the (n−k)-dominant strategy Nash equilibrium, each boundedly rational agent is assumed
to choose the agent’s equilibrium strategy. On the other hand, at the k-fault tolerant Nash equilibrium,
each faulty agent is not necessarily assumed to choose the agent’s equilibrium strategy. k-fault tolerant
Nash equilibrium is a robust notion of equilibrium in the sense that each rational agent has no incentive
to deviate from the agent’s equilibrium strategy even if faulty agents choose their any strategies. 11

By definition, k-fault tolerant Nash equilibrium is equivalent to Nash equilibrium if k = 0 and dom-
inant strategy equilibrium if k = n− 1. If 1 ≤ k ≤ n− 2, then k-fault tolerant Nash equilibrium is an
intermediate notion between Nash equilibrium and dominant strategy equilibrium. In addition, k-fault
tolerant Nash equilibrium is in general weaker than k′-fault tolerant Nash equilibrium if k < k′ by defini-
tion. In fact, Example 2 shows these relationships.

11At the dominant strategy equilibrium, all the agents choose their dominant strategy. If a faulty agent chooses the agent’s
any strategy, then each rational agent has no incentive to deviate from the dominant strategy because the incentive to choose
it does not depend on other agents’ strategies. This implies that dominant strategy equilibrium is so robust to such faulty
behaviors. On the other hand, at the Nash equilibrium, all the agents choose their best responses to other agents’ strategies. If a
faulty agent chooses the agent’s any strategy, then each rational agent might have an incentive to deviate from the best response
because the incentive to choose it depends on other agents’ strategies. This implies that Nash equilibrium is not robust to such
faulty behaviors.
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Example 2. Similar to Example 1, we consider the following three-person game: I ≡ {1,2,3}, S1 ≡
{U ,D}, S2 ≡ {L,R}, S3 ≡ {A,B}, and the payoffs are given as follows.

A L R

U 2, 2, 2 1, 2, 1

D 2, 1, 1 1, 1, 1

B L R

U 2, 2, 1 1, 1, 1

D 1, 1, 1 1, 1, 1

As stated in Example 1, this game has the following five Nash equilibria: (U, L, A), (D, L, A), (U, R, A),
(D, R, A), and (D, R, B). Especially, (U, L, A) is the unique (weakly) dominant strategy equilibrium. In
this game, we find that

(i) (U, L, A), (D, L, A), (U, R, A), (D, R, A), and (D, R, B) are 0-fault tolerant Nash equilibria,

(ii) (U, L, A) and (D, R, A) are 1-fault tolerant Nash equilibria, and

(iii) (U, L, A) is the unique 2-fault tolerant Nash equilibrium.

At the 0-fault tolerant Nash equilibria, each rational agent considers that there is no faulty agent other
than the agent. Therefore, each rational agent has no incentive to deviate from all the equilibria.

At the 1-fault tolerant Nash equilibria, each rational agent considers that there is at most one faulty
agent other than the agent. At (U, L, A), each rational agent has no incentive to deviate from the agent’s
strategy even if one other agent is faulty because the strategy is the agent’s (weakly) dominant strategy.
At (D, R, A), if agents 1 and 2 are rational, then they have no incentive to deviate from their strategies
respectively even if agent 3 is faulty and choose any possible strategy. In addition, rational agents 1 and 3
have no such an incentive even if agent 2 is faulty and rational agents 2 and 3 do even if agent 1 is faulty.
(D, L, A) is not a 1-fault tolerant Nash equilibrium because agent 1 has an incentive to deviate from (D,
L, B) by choosing U when agent 3 is faulty and deviates from (D, L, A) by choosing B. Similarly, (U,
R, A) is not a 1-fault tolerant Nash equilibrium because agent 2 has an incentive to deviate from (U, R,
B) by choosing L when agent 3 is faulty and deviates from (U, R, A) by choosing B and (D, R, B) is
not because agent 1 has an incentive to deviate from (D, L, B) by choosing U when agent 2 is faulty and
deviates from (D, R, B) by choosing L.

At the 2-fault tolerant Nash equilibria, each rational agent considers that there are at most two faulty
agents other than the agent. At (U, L, A), each rational agent has no incentive to deviate from the agent’s
strategy even if two other agents are faulty because the strategy is the agent’s (weakly) dominant strategy.

Remark 2. By definition, 0-fault tolerant Nash equilibrium is equivalent to 0-dominant strategy Nash
equilibrium because these are equivalent to Nash equilibrium. On the other hand, (n−1)-fault tolerant
Nash equilibrium is equivalent to n-dominant strategy Nash equilibrium by definition because these are
equivalent to dominant strategy equilibrium.

Remark 3. By Examples 1 and 2, we find that (D, L, A) and (U, R, A) are 2-dominant strategy Nash
equilibria, but not 1-fault tolerant Nash equilibria. On the other hand, we find that (D, R, A) is a 1-
fault tolerant Nash equilibria, but not a 2-dominant strategy Nash equilibrium. The relationship between
(n− k)-dominant strategy Nash equilibrium and k-fault tolerant Nash equilibrium is an open question
when 1 ≤ k ≤ n−2.
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For each k ∈ {0,1, . . . ,n−1} and each u ∈U , let

kFT NE(Γ,u) ≡ ∏
i∈I

 ∩
K⊆I : |K|≤k

kFT BRi(Γ,u;sI\{K∪{i}})


be the set of k-fault tolerant Nash equilibria in the mechanism Γ at the profile of utility functions u. Note
that (n−1)FT NE(Γ,u) = DSE(Γ,u) and 0FT NE(Γ,u) = NE(Γ,u) for each u ∈U .

3 Notion of Implementation

This section includes bounded rationality of the agents in implementation problems by introducing k-
secure implementation in Subsection 3.3, which is an intermediate notion between dominant strategy
implementation and secure implementation defined as double implementation in dominant strategy equi-
libria and Nash equilibria by Saijo, Sjöström, and Yamato (2007). In addition, in terms of the rationality
of the agents, this section discusses the relationship between k-secure implementation and secure im-
plementation and the relationship between k-secure implementation and k-fault tolerant implementation
introduced by Eliaz (2002) in addition to the relationship with basic notion of implementation.

3.1 Basic Notion of Implementation

Similar to the notion of equilibrium, dominant strategy implementation and Nash implementation are
basic notions of implementation. To show the relationship among such notions and k-secure implemen-
tation, this subsection introduces the two notions of implementation.

Dominant strategy implementation requires that for each profile of utility functions, (i) the outcome
can be achieved by some dominant strategy equilibrium in the mechanism and (ii) each dominant strategy
equilibrium in the mechanism achieves the outcome.

Definition 5. The mechanism Γ implements the social choice function f in the dominant strategy
equilibria if and only if for each u ∈U ,

(i) there is s ∈ DSE(Γ,u) such that g(s) = f (u) and

(ii) for each s′ ∈ DSE(Γ,u), g(s′) = f (u).

The social choice function f dominant strategy implementable if and only if there is a mechanism Γ
which implements f in the dominant strategy equilibria.

Nash implementation requires that for each profile of utility functions, (i) the outcome can be achieved
by some Nash equilibrium in the mechanism and (ii) each Nash equilibrium in the mechanism achieves
the outcome.

Definition 6. The mechanism Γ implements the social choice function f in the Nash equilibria if and
only if for each u ∈U ,

(i) there is s ∈ NE(Γ,u) such that g(s) = f (u) and

(ii) for each s′ ∈ NE(Γ,u), g(s′) = f (u).
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The social choice function f Nash implementable if and only if there is a mechanism Γ which imple-
ments f in the Nash equilibria.

By definition, dominant strategy implementation is independent of Nash implementation because
dominant strategy implementation does not require Condition (ii) of Definition 6 and Nash implementa-
tion does not require Condition (i) of Definition 5.

3.2 Secure Implementation

Both dominant strategy implementation and Nash implementation assume that each agent is rational and
chooses the agent’s best response, especially the agent’s dominant strategy when feasible. However,
it is observed that there are boundedly rational agents who choose their best responses which are dif-
ferent from their dominant strategies in several experiments. Dominant strategy implementation does
not require Condition (ii) of Definition 6. These imply the possibility that the mechanism which im-
plements a socially optimal outcome in dominant strategy equilibria has a “bad” Nash equilibrium and
a socially non-optimal outcome is achieved by the equilibrium when we actually use the mechanism.
Saijo, Sjöström, and Yamato (2007) introduced secure implementation to solve this multiple equilib-
rium problem. Secure implementation is double implementation in dominant strategy equilibria and Nash
equilibria, that is, for each profile of utility functions, (i) the outcome can be achieved by some dominant
strategy equilibrium in the mechanism and (ii) each Nash equilibrium in the mechanism achieves the
outcome.

Definition 7. The mechanism Γ securely implements the social choice function f if and only if for
each u ∈U ,

(i) there is s ∈ DSE(Γ,u) such that g(s) = f (u) and

(ii) for each s′ ∈ NE(Γ,u), g(s′) = f (u).

The social choice function f securely implementable if and only if there is a mechanism Γ which
securely implements f .

By definition, secure implementation is in general stronger than dominant strategy implementation
and Nash implementation.

3.3 k-Secure Implementation

Secure implementation can be interpreted as a notion of implementation which requires that the mecha-
nism successfully implements a socially optimal outcome even if all the agents are boundedly rational.
On the other hand, in compensation for the robustness to bounded rationality of the agents, secure imple-
mentability is so strong and there is rarely a non-trivial securely implementable social choice function.
To solve this difficulty, this paper introduces k-secure implementation which is not in general as strong
as secure implementation in terms of the assumption about the number of boundedly rational agents.
Given at most k ∈ {0,1, . . . ,n} boundedly rational agents, k-secure implementation requires that for each
profile of utility functions, (i) the outcome can be achieved by some dominant strategy equilibrium in
the mechanism and (ii) each (n− k)-dominant strategy Nash equilibrium in the mechanism achieves the
outcome.
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Definition 8. For each k ∈ {0,1, . . . ,n}, the mechanism Γ k-securely implements the social choice
function f if and only if for each u ∈U ,

(i) there is s ∈ DSE(Γ,u) such that g(s) = f (u) and

(ii) for each s′ ∈ (n− k)DSNE(Γ,u), g(s′) = f (u).

For each k ∈ {0,1, . . . ,n}, the social choice function f k-securely implementable if and only if there is
a mechanism Γ which k-securely implements f .

In Definition 8, there are at most k ∈ {0,1, . . . ,n} boundedly rational agents in the mechanism. At
each (n− k)-dominant strategy Nash equilibrium, although at least (n− k) rational agents choose their
dominant strategies, at most k boundedly rational agents might choose their best responses which are
different from their dominant strategies (see Condition (ii) of Definition 8). Therefore, k-secure imple-
mentation is equivalent to dominant strategy implementation if k = 0 and secure implementation if k = n.
If 1 ≤ k ≤ n−1, then k-secure implementation is an intermediate notion between dominant strategy im-
plementation and secure implementation. In addition, k-secure implementation is in general stronger
than k′-secure implementation if k < k′ by definition.

3.4 Relationship between k-Secure Implementation and k-Fault Tolerant Implementa-
tion

As stated in Remark 1, each faulty agent does not necessarily choose the equilibrium strategy at the k-
fault tolerant Nash equilibrium. This implies that a profile of strategies for all the agents is established as
the result of the deviation from the k-fault tolerant Nash equilibrium by some faulty agent and the profile
of strategies might be neither a dominant strategy equilibrium nor a Nash equilibrium. In consideration
of such a situation, Eliaz (2002) introduced k-fault tolerant implementation which is robust to such a
faultiness of the agents.

For each s,s′ ∈ S, let d(s,s′) ≡ |{i ∈ I : si ̸= s′i}| be the number of agents whose strategies at s
are different from those at s′ respectively, called the difference between s and s′. In the framework
of k-fault tolerant implementation, the difference conjectures the number of faulty agents. For each
k∈{0,1, . . . ,n−1} and each s∈ S, let D(k,s)≡{s′ ∈ S : d(s,s′)≤ k} be the set of profiles of strategies for
the agents, whose difference from s is at most k, called the k-neighborhood of s. In the framework of k-
fault tolerant implementation, the neighborhood is the set of profiles of strategies for the agents, which are
established by deviations from a k-fault tolerant Nash equilibrium, whose difference from the equilibrium
is at most k. Given at most k ∈ {0,1, . . . ,n− 1} faulty agents, k-fault tolerant implementation requires
that for each profile of utility functions, (i) the outcome can be achieved by some k-fault tolerant Nash
equilibrium in the mechanism, (ii) each k-fault tolerant Nash equilibrium in the mechanism achieves
the outcome, and (iii) each deviation from a k-fault tolerant Nash equilibrium in the mechanism, whose
difference from the equilibrium is at most k, also achieves the outcome.

Definition 9. For each k ∈ {0,1, . . . ,n−1}, the mechanism Γ implements the social choice function f
in the k-fault tolerant Nash equilibria if and only if for each u ∈U ,

(i) there is s ∈ kFT NE(Γ,u) such that g(s) = f (u),
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(ii) for each s′ ∈ kFT NE(Γ,u), g(s′) = f (u), and

(iii) for each s′ ∈ kFT NE(Γ,u) and each s′′ ∈ D(k,s′), g(s′′) = f (u).

For each k ∈ {0,1, . . . ,n−1}, the social choice function f k-fault tolerantly implementable if and only
if there is a mechanism Γ which implements f in the k-fault tolerant Nash equilibria.

In Definition 9, there are at most k ∈ {0,1, . . . ,n− 1} faulty agents other than each rational agent
in the mechanism. At each k-fault tolerant Nash equilibrium, although at least (n− k) rational agents
choose their best responses mutually, at most k faulty agents choose their any possible strategies. This
implies that the profile of strategies s′′ ∈ D(k,s′) might not be a Nash equilibrium. k-fault tolerant
implementation requires that such a profile of strategies for the agents also achieves a socially optimal
outcome by Condition (iii).

Remark 4. k-secure implementation assumes that each boundedly rational agent chooses the agent’s
equilibrium strategy. On the other hand, k-fault tolerant implementation assumes that each faulty agent
does not necessarily choose the agent’s equilibrium strategy. k-fault tolerant implementation is a robust
notion of implementation in the sense that a socially optimal outcome is achieved even if faulty agents
choose their any strategies.

By definition, k-fault tolerant implementation is equivalent to Nash implementation if k = 0 because
0FT NE(Γ,u) = NE(Γ,u) for each u ∈ U and 0-fault tolerant implementation requires that D(0,s′) =
{s′} for each s′ ∈ NE(Γ,u) and each u ∈ U . On the other hand, k-fault tolerant implementation is
in general stronger than dominant strategy implementation if k = n − 1 by definition because (n −
1)FT NE(Γ,u) = DSE(Γ,u) for each u ∈ U and (n − 1)-fault tolerant implementation requires that
g(s′′) = f (u) for each s′′ ∈ D(n − 1,s′), each s′ ∈ DSE(Γ,u), and each u ∈ U , where s′′ might not
be the dominant strategy equilibrium. In addition, k-fault tolerant implementation is in general weaker
than k′-fault tolerant implementation if k < k′ by definition.

Remark 5. By definition, 0-fault tolerant implementation is in general weaker than n-secure imple-
mentation because 0-fault tolerant implementation is equivalent to Nash implementation and n-secure
implementation is equivalent to secure implementation. On the other hand, (n−1)-fault tolerant imple-
mentation is in general stronger than k-secure implementation for each k ∈ {0,1, . . . ,n−1} by definition
because (n−1)-fault tolerant implementation requires dominant strategy implementation by Conditions
(i) and (ii) of Definition 9 and that any deviation from the dominant strategy equilibrium by at most
(n−1) faulty agents also achieves a socially optimal outcome by Condition (iii) of Definition 9. 12

4 Characterizations of Social Choice Functions

Although secure implementation is a solutions for the multiple equilibrium problem with dominant strat-
egy implementation related to Nash equilibria, this notion is so strong and there is rarely a non-trivial
securely implementable social choice function. In response to such a difficulty, the previous section
introduced k-secure implementation which is an intermediate notion between dominant strategy imple-
mentation and secure implementation in terms of the rationality of the agents. This section introduces

12Note that such deviations include (n− k)-dominant strategy Nash equilibria.
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the properties of social choice functions related to k-secure implementation and shows a characterization
of k-securely implementable social choice functions by the associated direct revelation mechanism re-
spectively. In addition, this section discusses the relationship among the properties related to dominant
strategy implementation, secure implementation, and k-secure implementation.

4.1 Dominant Strategy Implementable Social Choice Functions

Dasgupta, Hammond, and Maskin (1979, Theorem 4.1.1) showed that strategy-proofness is a neces-
sary condition for dominant strategy implementability by the associated direct revelation mechanism.
Strategy-proofness requires that the truthful revelation is a dominant strategy in the direct revelation
mechanism associated with a social choice function satisfying strategy-proofness.

Definition 10. The social choice function f satisfies strategy-proofness if and only if for each u,u′ ∈U
and each i ∈ I, ui( f (ui,u′I\{i})) ≥ ui( f (u′i,u

′
I\{i})).

Strategy-proofness does not require that truthful revelation is the “unique” dominant strategy. This
implies the possibility that there is some agent’s dominant strategy which is a the agent’s untruthful
revelation and induces a socially non-optimal outcome. To solve such a multiple equilibrium prob-
lem, Mizukami and Wakayama (2007, Corollary 1) and Saijo, Sjöström, and Yamato (2007, Theorem
3) independently characterized dominant strategy implementable social choice functions by strategy-
proofness and the following condition, called weak non-bossiness (Mizukami and Wakayama, 2007;
Saijo, Sjöström, and Yamato, 2007). 13 Weak non-bossiness requires that if the agent cannot change the
agent’s utility by the agent’s revelation irrespective of other agents’ revelations, then the outcome can-
not change by the revelation in the direct revelation mechanism associated with a social choice function
satisfying weak non-bossiness. 14

Definition 11. The social choice function f satisfies weak non-bossiness if and only if for each u,u′ ∈U
and each i ∈ I, if

ui( f (ui,u′′I\{i})) = ui( f (u′i,u
′′
I\{i})) for each u′′I\{i} ∈UI\{i},

then f (ui,u′I\{i}) = f (u′i,u
′
I\{i}).

Under the strategy-proof mechanism, weak non-bossiness requires that if the agent has a dominant
strategy which might be different from the agent’s truthful revelation, then the outcome achieved by
the dominant strategy equilibrium associated with such dominant strategies coincides with the outcome
achieved by truthful revelations. This characteristic solves the multiple equilibrium problem with domi-
nant strategy implementation related to dominant strategy equilibria.

Theorem 1 shows a characterization of dominant strategy implementable social choice functions by
the associated direct revelation mechanism respectively.

Theorem 1 (Mizukami and Wakayama, 2007; Saijo, Sjöström, and Yamato, 2007). The social choice
function is dominant strategy implementable by the direct revelation mechanism associated with it if
and only if it satisfies strategy-proofness and weak non-bossiness.

13Mizukami and Wakayama (2007) called weak non-bossiness by quasi-strong non-bossiness.
14Weak non-bossiness is a variant of non-bossiness (Satterthwaite and Sonnenschein, 1981). The social choice function

f satisfies non-bossiness if and only if for each u,u′ ∈ U and each i ∈ I, if fi(ui,u′I\{i}) = fi(u′i,u
′
I\{i}), then f (ui,u′I\{i}) =

f (u′i,u
′
I\{i}).
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Remark 6. In general environments, Theorem 1 shows a characterization of dominant strategy imple-
mentable social choice functions by the associated “direct” revelation mechanism respectively, but not
an “indirect” mechanism. In pure exchange economies, Mizukami and Wakayama (2007) showed an
example of dominant strategy implementable social choice functions by an indirect mechanism, which
satisfy strategy-proofness, but not weak non-bossiness.

4.2 Securely Implementable Social Choice Functions

By definition, strategy-proofness allows the existence of weakly dominant strategy in the associated di-
rect revelation mechanism when the indifference in preferences is allowed. This implies the possibility
that there is a Nash equilibrium which achieves a socially non-optimal outcome. Secure implementation
requires that all Nash equilibria also achieve the socially optimal outcomes in the strategy-proof mech-
anism. Saijo, Sjöström, and Yamato (2007, Theorem 1) characterized securely implementable social
choice functions by strategy-proofness and the following condition, called the rectangular property
(Saijo, Sjöström, and Yamato, 2007). The rectangular property requires that if each agent cannot change
the agent’s utility by the agent’s revelation, then the outcome cannot change by all the agents’ revelations
in the direct revelation mechanism associated with a social choice function satisfying the rectangular
property.

Definition 12. The social choice function f satisfies the rectangular property if and only if for each
u,u′ ∈U , if

ui( f (ui,u′I\{i})) = ui( f (u′i,u
′
I\{i})) for each i ∈ I,

then f (u) = f (u′).

Saijo, Sjöström, and Yamato (2007, Proposition 2) showed that the rectangular property is in general
stronger than weak non-bossiness. 15 Under the strategy-proof mechanism, the rectangular property
requires that if each agent has the agent’s best response which might be different from the agent’s truth-
ful revelation, then the outcome achieved by the Nash equilibrium associated with such best responses
coincides with the outcome achieved by truthful revelations. This characteristic solves the multiple equi-
librium problem in dominant strategy implementation related to Nash equilibria.

Theorem 2 shows a characterization of securely implementable social choice functions.

Theorem 2 (Saijo, Sjöström, and Yamato, 2007). The social choice function is securely implementable
if and only if it satisfies strategy-proofness and the rectangular property.

Saijo, Sjöström, and Yamato (2007, Corollary 1) showed another characterization of securely imple-
mentable social choice functions by strategy-proofness and the following conditions, called strong non-
bossiness (Ritz, 1983) and the outcome-rectangular property (Saijo, Sjöström, and Yamato, 2007). 16

15Precisely, Saijo, Sjöström, and Yamato (2007, Proposition 2) showed that the rectangular property is in general stronger
than a stronger variant of weak non-bossiness, called strong non-bossiness, defined in Definition 13 presented here.

16Ritz (1983) called strong non-bossiness by non-corruptibility and Saijo, Sjöström, and Yamato (2007) by non-bossiness.
See Ritz (1983), Nicolò (2004), Mizukami and Wakayama (2005), Saijo, Sjöström, and Yamato (2007), Berga and Moreno
(2009), and Nishizaki (2012, 2014, 2018a) for theoretical results on strong non-bossiness under strategy-proof mechanisms.
Mizukami and Wakayama (2017, Theorem 1) also showed an alternative characterization of securely implementable social
choice functions by individual maximality (Mizukami and Wakayama, 2017) and restricted monotonicity (Mizukami and
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Strong non-bossiness requires that if the agent cannot change the agent’s utility by the agent’s revelation,
then the outcome cannot change by the revelation in the direct revelation mechanism associated with a
social choice function satisfying strong non-bossiness. The outcome-rectangular property requires that
if each agent cannot change the outcome by the agent’s revelation, then the outcome cannot change by
all the revelations in the direct revelation mechanism associated with a social choice function satisfying
the outcome-rectangular property.

Definition 13. The social choice function f satisfies strong non-bossiness if and only if for each u,u′ ∈
U and each i ∈ I, if

ui( f (ui,u′I\{i})) = ui( f (u′i,u
′
I\{i})),

then f (ui,u′I\{i}) = f (u′i,u
′
I\{i}).

Definition 14. The social choice function f satisfies the outcome-rectangular property if and only if
for each u,u′ ∈U , if f (ui,u′I\{i}) = f (u′i,u

′
I\{i}) for each i ∈ I, then f (u) = f (u′).

By definition, strong non-bossiness is in general stronger than weak non-bossiness and non-bossiness.
In addition, the outcome-rectangular property is in general weaker than the rectangular property by defi-
nition.

Theorem 3 (Saijo, Sjöström, and Yamato, 2007). The social choice function is securely implementable if
and only if it satisfies strategy-proofness, strong non-bossiness, and the outcome-rectangular property.

Saijo, Sjöström, and Yamato (2007) also showed the revelation principle for secure implementation
as Theorem 4, which allows us to restrict our attention to the direct revelation mechanism associated
with a securely implementable social choice function when we consider secure implementation.

Theorem 4 (Saijo, Sjöström, and Yamato, 2007). The social choice function is securely implementable
if and only if the direct revelation mechanism associated with it securely implements it.

4.3 k-Securely Implementable Social Choice Functions

Although secure implementation solves the multiple equilibrium problem with dominant strategy imple-
mentation related to Nash equilibria, it is difficult to securely implement a socially optimal outcome. This
paper attempts to solve this difficulty in terms of the assumption about the number of boundedly rational
agents. As stated above, the rectangular property requires that if each agent has the agent’s best response
which might be different from the agent’s truthful revelation, then the outcome achieved by the Nash
equilibrium associated with such best responses coincides with the outcome achieved by truthful revela-
tions in the strategy-proof mechanism. In other words, secure implementation requires that the socially
optimal outcome is achieved even if all the agents are boundedly rational. k-secure implementation is not
as strong as secure implementation in terms of the assumption about the number of boundedly rational
agents, that is, k-secure implementation requires that the socially optimal outcome is achieved if at most
k ∈ {0,1, . . . ,n} agents are boundedly rational. This paper characterizes k-securely implementable social
choice functions by strategy-proofness and the following condition, called the k-rectangular property,

Wakayama, 2017). In general, individual maximality is weaker than strategy-proofness and restricted monotonicity is stronger
than Maskin monotonicity (Maskin, 1977, 1999) by definition, which is a necessary condition for Nash implementability.
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defined as a “convex combination” of weak non-bossiness which is a necessary condition for dominant
strategy implementability by the associated direct revelation mechanism and the rectangular property
which is a necessary condition for secure implementability.

Definition 15. For each k ∈ {0,1, . . . ,n}, the social choice function f satisfies the k-rectangular prop-
erty if and only if for each u,u′ ∈U , each K ⊆ I with |K| ≤ k, and each i ∈ I \K, if

(i) ui( f (ui,u′′I\{i})) = ui( f (u′i,u
′′
I\{i})) for each u′′I\{i} ∈UI\{i} and

(ii) u j( f (u j,u′K\{ j},u′I\K)) = u j( f (u′j,u
′
K\{ j},u′I\K)) for each j ∈ K,

then f (ui,uK\{i},u′I\{K∪{i}}) = f (u′i,u
′
K\{i},u′I\{K∪{i}}). 17

In Definition 15, we can consider that K is the set of boundedly rational agents and I \K is the set
of rational agents. In the direct revelation mechanism associated with a social choice function satisfying
strategy-proofness and the k-rectangular property, truthful revelation is a dominant strategy for each
agent. Condition (i) supposes that u′i is also a dominant strategy for rational agent i ∈ I \K. In addition,
Condition (ii) supposes that u′j is a best response for each boundedly rational agent j ∈ K to the profile
of strategies for other agents (u′K\{ j},u′I\K). The k-rectangular property requires that the outcome does
not change by such dominant strategy and best responses.

If k = 0, then K = /0 and I \K = I in Definition 15. This implies that Condition (ii) of Definition 15
is redundant and the 0-rectangular property is equivalent to weak non-bossiness by definition. Together
with Theorem 1, this implies the following characterization of dominant strategy implementable social
choice functions by the associated direct revelation mechanism respectively.

Corollary 1. The social choice function is dominant strategy implementable by the direct revelation
mechanism associated with it if and only if it satisfies strategy-proofness and the 0-rectangular prop-
erty.

If k = 1, then K ̸= /0 and I \K ⊂ I when |K| = 1. On the basis of this relationship, Proposition 1
shows that the 1-rectangular property is equivalent to strong non-bossiness. By definition, this implies
that the 1-rectangular property is in general stronger than weak non-bossiness which is equivalent to the
0-rectangular property.

Proposition 1. The social choice function f satisfies the 1-rectangular property if and only if f satisfies
strong non-bossiness.

Proof. See Appendix.

By Theorem 3 and Proposition 1, we have the following characterization of securely implementable
social choice functions.

Corollary 2. The social choice function is securely implementable if and only if it satisfies strategy-
proofness, the 1-rectangular property, and the outcome-rectangular property.

17Note that K \{i} = K when |K| < n because i ∈ I \K. In addition, K ∪{i} = I when |K| = n because K = I.
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If k = n, then K ̸= /0 and I\K ⊂ I when |K| ≥ 1, especially I\K = /0 when |K|= n. On the basis of this
relationship, Proposition 2 shows that the n-rectangular property is equivalent to the rectangular property
by an argument similar to Proposition 1. Together with Proposition 2 of Saijo, Sjöström, and Yamato
(2007), this implies that the n-rectangular property is in general stronger than strong non-bossiness which
is equivalent to the 1-rectangular property by Proposition 1.

Proposition 2. The social choice function f satisfies the n-rectangular property if and only if f satisfies
the rectangular property.

Proof. See Appendix.

By Theorem 2 and Proposition 2, we have the following characterization of securely implementable
social choice functions.

Corollary 3. The social choice function is securely implementable if and only if it satisfies strategy-
proofness and the n-rectangular property.

On the basis of Proposition 1, we know that the 1-rectangular property is in general stronger than the
0-rectangular property. In addition, on the basis of Proposition 2 and Proposition 2 of Saijo, Sjöström,
and Yamato (2007), we know that the n-rectangular property is in general stronger than the 1-rectangular
property. Essentially, the k-rectangular property is stronger with the increase in the number of k. 18

Under the strategy-proof mechanism, the k-rectangular property requires that if (i) the rational agent
has the agent’s dominant strategy which might be different from the agent’s truthful revelation and (ii)
each boundedly rational agent, where there are at most k ∈ {0,1, . . . ,n} boundedly rational agents, has
the agent’s best response which might be different from the agent’s truthful revelation, then the outcome
achieved by the (n−k)-dominant strategy Nash equilibrium associated with such dominant strategies and
best responses coincides with the outcome achieved by truthful revelations. This characteristic solves the
difficulty of secure implementation in terms of the assumption about the number of boundedly rational
agents.

Because k-secure implementation implies dominant strategy implementation by definition, Corollary
4 shows that strategy-proofness is a necessary condition for k-secure implementability by the associated
direct revelation mechanism on the basis of Theorem 1.

Corollary 4. For each k ∈ {0,1, . . . ,n}, if the social choice function is k-securely implementable by the
direct revelation mechanism associated with it, then it satisfies strategy-proofness.

In addition, Proposition 3 shows that the k-rectangular property is a necessary condition for k-secure
implementability by the associated direct revelation mechanism.

Proposition 3. For each k ∈ {0,1, . . . ,n}, if the social choice function f is k-securely implementable by
the direct revelation mechanism associated with it Γ f , then f satisfies the k-rectangular property.

Proof. Let u,u′ ∈U , K ⊆ I with |K| ≤ k, and i ∈ I \K be such that (i) ui( f (ui,u′′I\{i})) = ui( f (u′i,u
′′
I\{i}))

for each u′′I\{i} ∈ UI\{i} and (ii) u j( f (u j,u′K\{ j},u′I\K)) = u j( f (u′j,u
′
K\{ j},u′I\K)) for each j ∈ K. This

proof consists of the following four claims.
18For each k,k′ ∈ {0,1, . . . ,n}, if k < k′, then the k′-rectangular property is in general stronger than the k-rectangular property

by definition because we can take K′ ⊆ I with |K′| ≤ k′ such that K′ = K, where K ⊆ I with |K| ≤ k.
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Claim 1. u′i ∈ DSi(Γ,ui).

By Corollary 4, we know that ui ∈ DSi(Γ f ,ui). This implies that

ui(g f (ui,u′′I\{i})) ≥ ui(g f (u′′i ,u′′I\{i})) for each u′′i ∈Ui and each u′′I\{i} ∈UI\{i}. (1)

By Corollary 4, we also know that u′i ∈DSi(Γ f ,u′i) and u′′I\{i} ∈DSI\{i}(Γ f ,u′′I\{i}) for each u′′I\{i} ∈UI\{i}.
This implies that (ui,u′′I\{i}) ∈ DS(Γ f , (ui,u′′I\{i})) and (u′i,u

′′
I\{i}) ∈ DS(Γ f , (u′i,u

′′
I\{i})) for each u′′I\{i} ∈

UI\{i}. Because f is k-securely implementable by Γ f , these imply that g f (ui,u′′I\{i}) = f (ui,u′′I\{i}) and
g f (u′i,u

′′
I\{i}) = f (u′i,u

′′
I\{i}) for each u′′I\{i} ∈UI\{i}. Together with Condition (i), this implies that

ui(g f (ui,u′′I\{i})) = ui(g f (u′i,u
′′
I\{i})) for each u′′I\{i} ∈UI\{i}. (2)

By (1) and (2), we find that ui(g f (u′i,u
′′
I\{i}))≥ ui(g f (u′′i ,u′′I\{i})) for each u′′i ∈Ui and each u′′I\{i} ∈UI\{i},

that is, u′i ∈ DSi(Γ f ,ui).

Claim 2. u′K ∈ BRK(Γ f ,uK |u′I\K).

By Corollary 4, we know that u j ∈ DS j(Γ f ,u j) for each j ∈ K. This implies that for each j ∈ K,

u j(g f (u j,u′K\{ j},u′I\K)) ≥ u j(g f (u′′j ,u
′
K\{ j},u′I\K)) for each u′′j ∈U j. (3)

By Corollary 4, we also know that u′j ∈ DS j(Γ f ,u′j) and u′K\{ j} ∈ DSK\{ j}(Γ f ,u′K\{ j}) for each j ∈ K and
u′I\K ∈DSI\K(Γ f ,u′I\K). This implies that (u j,u′K\{ j},u′I\K)∈DS(Γ f , (u j,u′K\{ j},u′I\K)) and (u′j,u

′
K\{ j},u′I\K)∈

DS(Γ f , (u′j,u
′
K\{ j},u′I\K)) for each j ∈ K. Because f is k-securely implementable by Γ f , these imply

g f (u j,u′K\{ j},u′I\K) = f (u j,u′K\{ j},u′I\K) and g f (u′j,u
′
K\{ j},u′I\K) = f (u′j,u

′
K\{ j},u′I\K) for each j ∈ K.

Together with Condition (ii), this implies that for each j ∈ K,

u j(g f (u j,u′K\{ j},u′I\K)) = u j(g f (u′j,u
′
K\{ j},u′I\K)). (4)

By (3) and (4), we find that for each j ∈ K, u j(g f (u′j,u
′
K\{ j},u′I\K)) ≥ u j(g f (u′′j ,u

′
K\{ j},u′I\K)) for each

u′′j ∈U j. This implies that u′j ∈ BR j(Γ f ,u j|u′K\{ j},u′I\K) for each j ∈ K, that is, u′K ∈ BRK(Γ f ,uK |u′I\K).

Claim 3. f (u′i,uK\{i},u′I\{K∪{i}}) = f (u′i,u
′
K\{i},u′I\{K∪{i})}).

By Corollary 4, we know that u′i ∈DSi(Γ f ,u′i) and u′I\{K∪{i}} ∈DSI\{K∪{i}}(Γ f ,u′I\{K∪{i}}). By Claim
2, we know that u′K ∈ BRK(Γ f ,uK |u′I\K). These imply that

(u′i,u
′
K\{i},u′I\{K∪{i}}) ∈ (n− k)DSNE(Γ f , (u′i,uK\{i},u′I\{K∪{i}})).

Because f is k-securely implementable by Γ f , this implies that

g f (u′i,u
′
K\{i},u′I\{K∪{i}}) = f (u′i,uK\{i},u′I\{K∪{i}}).

Because (u′i,u
′
K\{i},u′I\{K∪{i}}) ∈ DSE(Γ f , (u′i,u

′
K\{i},u′I\{K∪{i}})) by Corollary 4 and

g f (u′i,u
′
K\{i},u′I\{K∪{i}}) = f (u′i,u

′
K\{i},u′I\{K∪{i}})

by k-secure implementability, this implies that f (u′i,uK\{i},u′I\{K∪{i}}) = f (u′i,u
′
K\{i},u′I\{K∪{i}}).

Claim 4. f (ui,uK\{i},u′I\{K∪{i}}) = f (u′i,u
′
K\{i},u′I\{K∪{i}}).
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By Corollary 4, we know that uK ∈ DSK(Γ f ,uK) and u′I\{K∪{i}} ∈ DSI\{K∪{i}}(Γ f ,u′I\{K∪{i}}). By
Claim 1, we know that u′i ∈DSi(Γ f ,ui). These imply that (u′i,uK\{i},u′I\{K∪{i}})∈DS(Γ f , (ui,uK\{i},u′I\{K∪{i}})).
Because f is k-securely implementable by Γ f , this implies that

g f (u′i,uK\{i},u′I\{K∪{i}}) = f (ui,uK\{i},u′I\{K∪{i}}).

Because (u′i,uK\{i},u′I\{K∪{i}}) ∈ DSE(Γ f , (u′i,uK\{i},u′I\{K∪{i}})) by Corollary 4 and

g f (u′i,uK\{i},u′I\{K∪{i}}) = f (u′i,uK\{i},u′I\{K∪{i}})

by k-secure implementability, this implies that f (ui,uK\{i},u′I\{K∪{i}}) = f (u′i,uK\{i},u′I\{K∪{i}}). To-
gether with Claim 3, this implies that f (ui,uK\{i},u′I\{K∪{i}}) = f (u′i,u

′
K\{i},u′I\{K∪{i}}).

On the other hand, Proposition 4 shows that the combination of strategy-proofness and the k-rectangular
property is a sufficient condition for k-secure implementability by the associated direct revelation mech-
anism.

Proposition 4. For each k ∈ {0,1, . . . ,n}, if the social choice function f satisfies strategy-proofness
and the k-rectangular property, then the direct revelation mechanism associated with it Γ f k-securely
implements f .

Proof. Let u ∈ U . By the definition of Γ f and strategy-proofness, we find that u ∈ DSE(Γ f ,u) and
g f (u) = f (u). The remainder of this proof confirms that g f (u′) = f (u) for each u′ ∈ (n−k)DSNE(Γ f ,u)
according to the number of k. If k = 0, then we know that (n− k)DSNE(Γ f ,u) = DSE(Γ f ,u) and the
k-rectangular property is equivalent to weak non-bossiness by definition. Together with Theorem 1,
this implies that g f (u′) = f (u) for each u′ ∈ (n− k)DSNE(Γ f ,u). If k = n, then we know that (n−
k)DSNE(Γ f ,u) = NE(Γ f ,u) and the k-rectangular property is equivalent to the rectangular property by
definition. Together with Theorem 2, this implies that g f (u′) = f (u) for each u′ ∈ (n− k)DSNE(Γ f ,u).
In what follows, we consider the case in which 0 < k < n.

Let u′ ∈ (n−k)DSNE(Γ f ,u). If 0 < k < n, then we know that I \K ̸= /0 and K ̸= /0. Let i1 ∈ I \K. By
definition, we know that u′i1 ∈ DSi1(Γ f ,u). Together with the definition of Γ f and strategy-proofness,
this implies that

ui1( f (ui1 ,u′′I\{i1})) = ui1( f (u′i1 ,u′′I\{i1})) for each u′′I\{i1} ∈UI\{i1}. (5)

By definition, we also know that u′j ∈BR j(Γ f ,u;u′K\{ j},u′I\K) for each j ∈K. Together with the definition
of Γ f and strategy-proofness, this implies that

u j( f (u j,u′K\{ j},u′I\K)) = u j( f (u′j,u
′
K\{ j},u′I\K)) for each j ∈ K. (6)

By (5), (6), and the k-rectangular property, we find that

f (ui1 ,uK\{i1},u′I\{K∪{i1}}) = f (u′i1 ,u′K\{i1},u′I\{K∪{i1}}). (7)

Let u∗ ≡ (ui1 ,uK\{i1},u′I\{K∪{i1}}) and i2 ∈ I \{K ∪{i1}}. By definition, we know that u∗i2 ∈ DSi2(Γ f ,u).
Together with the definition of Γ f and strategy-proofness, this implies that

ui2( f (ui2 ,u′′I\{i2})) = ui2( f (u∗i2 ,u′′I\{i2})) for each u′′I\{i2} ∈UI\{i2}. (8)
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Together with the definition of Γ f and the definition of u∗, we know that

u j( f (u j,u∗K\{ j},u∗I\K)) = u j( f (u∗j ,u
∗
K\{ j},u∗I\K)) for each j ∈ K. (9)

By (8), (9), and the k-rectangular property, we find that f (ui2 ,uK\{i2},u∗I\{K∪{i2}}) = f (u∗i2 ,u∗K ,u∗I\{K∪{i2}}),
that is,

f (ui1 ,ui2 ,uK\{i2},u′I\{K∪{i1,i2}}) = f (ui1 ,u′i2 ,uK\{i2},u′I\{K∪{i1,i2}}). (10)

By (7) and (10), we find that f (ui1 ,ui2 ,uK\{i2},u′I\{K∪{i1,i2}}) = f (u′i1 ,u′i2 ,u′K\{i2},u′I\{K∪{i1,i2}}). By se-
quentially replacing u′i by ui for each i ∈ I \{K ∪{i1, i2}} in this manner, we find that f (u) = f (u′), that
is, g f (u′) = f (u) by the definition of Γ f .

By Corollary 4 and Propositions 3 and 4, we have the following characterization of k-securely im-
plementable social choice functions by the associated direct revelation mechanism respectively.

Theorem 5. For each k ∈ {0,1, . . . ,n}, the social choice function is k-securely implementable by the
direct revelation mechanism associated with it if and only if it satisfies strategy-proofness and the k-
rectangular property.

Remark 7. In general environments, Theorem 5 shows a characterization of k-securely implementable
implementable social choice functions by the associated “direct” revelation mechanism respectively, but
not an “indirect” mechanism. If k = 0, then we know that there is a k-securely implementable imple-
mentable social choice function by an indirect mechanism, which satisfies strategy-proofness, but not the
k-rectangular property, on the basis of the example of Mizukami and Wakayama (2007) in pure exchange
economies. If k = n, then we know that Theorem 5 also shows a characterization of k-securely imple-
mentable implementable social choice functions by an indirect mechanism on the basis of Theorems 2
and 4. It is an open question whether the revelation principle for k-secure implementation similar to
Theorem 4 is established when 1 ≤ k ≤ n−1.

5 Application: Binary Voting

To show a possibility of k-secure implementation, we consider the following binary voting environment.
Let n be an odd integer and A = {0,1}. For each i ∈ I, let Ui = {u0

i ,u1
i }, where u0

i (0) > u0
i (1) and

u1
i (1) > u1

i (0). In this environment, it is well-known that majority rule is non-dictatorial, Pareto-efficient,
and dominant strategy implementable. For each u ∈ U , let n0(u) ∈ {0, . . . ,n} be the number of agents
who prefer 0 to 1 and n1(u) ≡ n− n0(u) be the number of agents who prefer 1 to 0 at u. The direct
revelation mechanism Γ f is majority rule if and only if for each u ∈U ,

g f (u) =

0 if n0(u) > n1(u),

1 if n0(u) < n1(u).

Saijo, Sjöström, and Yamato (2007) showed that majority rule is not securely implementable. In fact,
Example 3 shows this impossibility.

Example 3. We consider the five-person binary voting environment. Let Γ f be majority rule. Be-
cause the associated social choice function f is dominant strategy implementable by Γ f , we know
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that (u0
1,u0

2,u0
3,u0

4,u0
5) ∈ DS(Γ f , (u0

1,u0
2,u0

3,u0
4,u0

5)) and g f (u0
1,u0

2,u0
3,u0

4,u0
5) = f (u0

1,u0
2,u0

3,u0
4,u0

5). On
the other hand, we know that (u1

1,u1
2,u1

3,u1
4,u1

5) ∈ NE(Γ f , (u0
1,u0

2,u0
3,u0

4,u0
5)). Secure implementation re-

quires that g f (u1
1,u1

2,u1
3,u1

4,u1
5) = f (u0

1,u0
2,u0

3,u0
4,u0

5) and we find that g f (u0
1,u0

2,u0
3,u0

4,u0
5) = g f (u1

1,u1
2,u1

3,u1
4,u1

5).
This is a contradiction.

By definition, we know that majority rule is 0-securely implementable. In addition, majority rule is
1-securely implementable because any best response for a boundedly rational agent does not change the
outcome. Example 3 implies that majority rule is not 5-securely implementable when n = 5. In what fol-
lows, we consider 2-securely implementability of majority rule at (u0

1,u0
2,u0

3,u0
4,u0

5) and (u0
1,u0

2,u0
3,u0

4,u1
5).

Case 1. (u0
1,u0

2,u0
3,u0

4,u0
5).

In this case, we know that (u0
1,u0

2,u0
3,u0

4,u0
5) ∈ DS(Γ f , (u0

1,u0
2,u0

3,u0
4,u0

5)) and g f (u0
1,u0

2,u0
3,u0

4,u0
5) =

f (u0
1,u0

2,u0
3,u0

4,u0
5). We suppose that agents 3 and 4 are boundedly rational and might choose their best

responses u1
3 and u1

4 at (u0
1,u0

2,u0
3,u0

4,u0
5). If both the agents choose their best responses respectively, then

we find that (u0
1,u0

2,u1
3,u1

4,u0
5) ∈ 3DSNE(Γ f , (u0

1,u0
2,u0

3,u0
4,u0

5)). 2-secure implementation requires that
g f (u0

1,u0
2,u1

3,u1
4,u0

5) = f (u0
1,u0

2,u0
3,u0

4,u0
5) and we find that g f (u0

1,u0
2,u0

3,u0
4,u0

5) = g f (u0
1,u0

2,u1
3,u1

4,u0
5).

This is “not” a contradiction.

Case 2. (u0
1,u0

2,u0
3,u0

4,u1
5).

In this case, we know that (u0
1,u0

2,u0
3,u0

4,u1
5) ∈ DS(Γ f , (u0

1,u0
2,u0

3,u0
4,u1

5)) and g f (u0
1,u0

2,u0
3,u0

4,u1
5) =

f (u0
1,u0

2,u0
3,u0

4,u1
5). Similar to Case 1, we suppose that agents 3 and 4 are boundedly rational and might

choose their best responses u1
3 and u1

4 at (u0
1,u0

2,u0
3,u0

4,u1
5). If both the agents choose their best responses

respectively, then we find that (u0
1,u0

2,u1
3,u1

4,u1
5) ∈ 3DSNE(Γ f , (u0

1,u0
2,u0

3,u0
4,u1

5)). 2-secure implemen-
tation requires that g f (u0

1,u0
2,u1

3,u1
4,u1

5) = f (u0
1,u0

2,u0
3,u0

4,u1
5) and we find that g f (u0

1,u0
2,u0

3,u0
4,u1

5) =
g f (u0

1,u0
2,u1

3,u1
4,u1

5). This is a contradiction.

The major difference between Cases 1 and 2 depends on whether they satisfy the condition n0(u) >

(n/2) + k. In Case 1, we find that n0((u0
1,u0

2,u0
3,u0

4,u0
5)) = 5 > 4.5 = (5/2) + 2 and the condition is

satisfied. On the other hand, in Case 2, we find that n0((u0
1,u0

2,u0
3,u0

4,u1
5)) = 4 < 4.5 = (5/2)+2 and the

condition is not satisfied. On the basis of the above argument, Theorem 6 shows a condition for k-secure
implementability of majority rule.

Theorem 6. For each k ∈ {0,1, . . . ,⌊n/2⌋}, majority rule is k-securely implementable when the domain
of the rule is {u ∈U : n0(u) > (n/2)+ k or n1(u) > (n/2)+ k}. 19

Proof. Because it is well-known that majority rule satisfies strategy-proofness, we confirm that it also
satisfies the k-rectangular property according to Theorem 5. Let f be the associated social choice func-
tion. In addition, let u,u′ ∈ {u ∈ U : n0(u) > (n/2) + k or n1(u) > (n/2) + k}, K ⊆ I with |K| ≤
k, and i ∈ I \ K be such that (i) ui( f (ui,u′′I\{i})) = ui( f (u′i,u

′′
I\{i})) for each u′′I\{i} ∈ UI\{i} and (ii)

u j( f (u j,u′K\{ j},u′I\K)) = u j( f (u′j,u
′
K\{ j},u′I\K)) for each j ∈ K. By Condition (i) and the definition

of the set of utility functions for each agent, we find that

ui = u′i. (11)
19⌊·⌋ is the floor function.
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We prove this theorem according to the number of k.
If k = 0, then K = /0 and Condition (ii) is redundant. By (11), we know that f (ui,u′I\{i}) = f (u′i,u

′
I\{i}).

This implies that f satisfies the k-rectangular property.
If 1 ≤ k ≤ ⌊n/2⌋, then K ̸= /0 and Condition (ii) is not redundant. 20 We consider the case in which

n0(u′) > (n/2)+ k. In this case, we know that

f (u′i,u
′
K\{i},u′I\{K∪{i}}) = 0. (12)

By the definition of the domain of f , we find that

f (u′i,uK\{i},u′I\{K∪{i}}) = 0 (13)

even if k = ⌊n/2⌋, |K| = k, and u j = u1
j for each j ∈ K because n0(u′j,uK\{ j},u′I\K) ≥ n0(u′)− k >

(n/2)+k−k = (n/2). By (12) and (13), we find that f (u′i,uK\{i},u′I\{K∪{i}}) = f (u′i,u
′
K\{i},u′I\{K∪{i}}).

Together with (11), this implies that f (ui,uK\{i},u′I\{K∪{i}}) = f (u′i,u
′
K\{i},u′I\{K∪{i}}).

In fact, both sets of outcomes achieved by dominant strategy equilibria and (n−k)-dominant strategy
Nash equilibria in majority rule respectively coincide with the set of outcomes assigned by the associated
social choice function when the number of boundedly rational agents is less than half the number of
all the agents and the domain of the rule satisfies the condition supposed in Theorem 6. Let U0 ≡
{u ∈ U : n0(u) > (n/2) + k} and u ∈ U0. Because majority rule satisfies strategy-proofness, we know
that u ∈ DSE(Γ f ,u) and g f (u) = f (u). Let u′ ∈ (n− k)DSNE(Γ f ,u). Because u ∈ U0, we find that
n0(u′)≥ n0(u)−k > n/2 > n1(u′). This implies that g f (u′) = 0 and we find that g f (u′) = f (u) because
u ∈U0 and f (u) = 0. By an argument similar to the case of U0, we have the same result when we take
u ∈U1 ≡ {u ∈U : n1(u) > (n/2)+ k}. This implies that majority rule k-securely implements a socially
optimal outcome under the assumption of Theorem 6. This possibility result suggests that majority rule
works well in practice when the number of boundedly rational agents is sufficiently small.

6 Conclusion

Under the mechanism in which there is a dominant strategy equilibrium at the profile of utility functions,
implementation theory mostly assumes that all the agents are rational and they choose their dominant
strategies. Although this assumption is reasonable when the indifference in preferences is not allowed
for each agent, it is questionable whether this assumption is reasonable when the indifference in pref-
erences is allowed for some agent because there might be the agent’s best response which is different
from the agent’s dominant strategy. In addition, it is observed that several subjects do not choose their
dominant strategies even though they can choose them in the experiment. Alternatively, some of them
choose their best responses which are different from their dominant strategies. On the basis of such
theoretical question and experimental results, this paper assumes that there might be several boundedly
rational agents who choose their best responses which are different from their dominant strategies. Un-
der the assumption, this paper introduced k-secure implementation and showed necessary and sufficient
conditions for k-secure implementability by the associated direct revelation mechanism.

20That being said, we need to pay attention to Condition (ii) because this condition is satisfied on its own on the domain
supposed in this theorem. By the definition of the domain of f , we find that na(u j,u′K\{ j},u′I\K)≥ na(u′)−1 > (n/2)+k−1 ≥
(n/2) for a = 0,1. This implies that f (u j,u′K\{ j},u′I\K) = f (u′j ,u

′
K\{ j},u′I\K) for each j ∈ K.
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k-secure implementation is in general weaker than secure implementation if k ≤ n−1 by definition.
This implies the possibility that there is a non-trivial social choice function which is not securely imple-
mentable, but k-securely implementable by the associated direct revelation mechanism. In fact, Theorem
6 showed that majority rule is not securely implementable, but k-securely implementable when the num-
ber of boundedly rational agents is sufficiently small. Therefore, it is interesting to investigate non-trivial
k-securely implementable social choice functions in various environments. In addition, experimental
studies on k-secure implementation are important. These research issues are left for future works.

Appendix: Relationship among the k-Rectangular Property, Strong Non-
Bossiness, and the Rectangular Property

As stated above, Proposition 1 in Subsection 4.3 shows that the 1-rectangular property is equivalent to
strong non-bossiness. By definition, this implies that the 1-rectangular property is in general stronger
than weak non-bossiness which is equivalent to the 0-rectangular property.

Proposition 1. The social choice function f satisfies the 1-rectangular property if and only if f satisfies
strong non-bossiness.

Proof. This proof consists of the following two claims.

Claim 1. f satisfies the 1-rectangular property if f satisfies strong non-bossiness.

Let u,u′ ∈U , K ⊆ I with |K| ≤ 1, and i ∈ I \K be such that (i) ui( f (ui,u′′I\{i})) = ui( f (u′i,u
′′
I\{i})) for

each u′′I\{i} ∈ UI\{i} and (ii) u j( f (u j,u′K\{ j},u′I\K)) = u j( f (u′j,u
′
K\{ j},u′I\K)) for each j ∈ K. We prove

this claim according to the number of |K|.
If |K| = 0, then K = /0 and I \K = I. This implies that Condition (ii) is redundant and it is suffi-

cient to show that f (ui,u′I\{i}) = f (u′i,u
′
I\{i}) for i ∈ I on the basis of Condition (i). Let u′′I\{i} = u′I\{i}.

Together with Condition (i), this implies that ui( f (ui,u′I\{i})) = ui( f (u′i,u
′
I\{i})). Together with strong

non-bossiness, this implies that f (ui,u′I\{i}) = f (u′i,u
′
I\{i}).

If |K|= 1, then K ̸= /0 and there is j ∈K. This implies that it is sufficient to show that f (ui,u j,u′I\{i, j}) =
f (u′i,u

′
j,u

′
I\{i, j}) on the basis of Conditions (i) and (ii). Because K = { j}, Condition (ii) can be rewritten

as follows: u j( f (u j,u′I\{ j})) = u j( f (u′j,u
′
I\{ j})). Together with strong non-bossiness, this implies that

f (u′i,u j,u′I\{i, j}) = f (u′i,u
′
j,u

′
I\{i, j}). (14)

Let u′′I\{i} = (u j,u′I\{i, j}). Together with Condition (i), this implies that ui( f (ui,u j,u′I\{i, j})) = ui( f (u′i,u j,u′I\{i, j})).
Together with strong non-bossiness, this implies that

f (ui,u j,u′I\{i, j}) = f (u′i,u j,u′I\{i, j}). (15)

By (14) and (15), we find that f (ui,u j,u′I\{i, j}) = f (u′i,u
′
j,u

′
I\{i, j}).

Claim 2. f satisfies the 1-rectangular property only if f satisfies strong non-bossiness.

Let u,u′ ∈U and j ∈ I be such that

u j( f (u j,u′I\{ j})) = u j( f (u′j,u
′
I\{ j})). (16)
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In addition, let K ≡ { j}, i ∈ I \K, and u∗i ≡ u′i. Because u∗i ≡ u′i, we find that

u∗i ( f (u∗i ,u′′I\{i})) = u∗i ( f (u′i,u
′′
I\{i})) for each u′′I\{i} ∈UI\{i}. (17)

Because K ≡ { j} and K \{ j} = /0, by (16), we find that

u j( f (u j,u′K\{ j},u′I\K)) = u j( f (u′j,u
′
K\{ j},u′I\K)). (18)

Because K ≡ { j}, by (17), (18), and the 1-rectangular property, we find that f (u∗i ,uK\{i},u′I\{K∪{i}}) =
f (u′i,u

′
K\{i},u′I\{K∪{i}}). Because K ≡ { j} and u∗i ≡ u′i, this implies that f (u j,u′I\{ j}) = f (u′j,u

′
I\{ j}).

As stated above, Proposition 2 in Subsection 4.3 shows that the n-rectangular property is equivalent
to the rectangular property by an argument similar to Proposition 1 in Subsection 4.3. Together with
Proposition 2 of Saijo, Sjöström, and Yamato (2007), this implies that the n-rectangular property is in
general stronger than strong non-bossiness which is equivalent to the 1-rectangular property by Proposi-
tion 1.

Proposition 2. The social choice function f satisfies the n-rectangular property if and only if f satisfies
the rectangular property.

Proof. This proof consists of the following two claims.

Claim 1. f satisfies the n-rectangular property if f satisfies the rectangular property.

Let u,u′ ∈U , K ⊆ I with |K| ≤ n, and i ∈ I \K be such that (i) ui( f (ui,u′′I\{i})) = ui( f (u′i,u
′′
I\{i})) for

each u′′I\{i} ∈ UI\{i} and (ii) u j( f (u j,u′K\{ j},u′I\K)) = u j( f (u′j,u
′
K\{ j},u′I\K)) for each j ∈ K. We prove

this claim according to the number of |K|.
If |K| = 0, then K = /0 and I \K = I. This implies that Condition (ii) is redundant and it is suffi-

cient to show that f (ui,u′I\{i}) = f (u′i,u
′
I\{i}) for i ∈ I on the basis of Condition (i). Let u′′I\{i} = u′I\{i}.

Together with Condition (i), this implies that ui( f (ui,u′I\{i})) = ui( f (u′i,u
′
I\{i})). Together with strong

non-bossiness, this implies that f (ui,u′I\{i}) = f (u′i,u
′
I\{i}) because the rectangular property implies

strong non-bossiness by Proposition 2 of Saijo, Sjöström, and Yamato (2007).
If |K| = n, then K = I and I \K = /0. This implies that Condition (i) is redundant and Condition

(ii) can be rewritten as follows: u j( f (u j,u′I\{ j})) = u j( f (u′j,u
′
I\{ j})) for each j ∈ I. In addition, it

is sufficient to show that f (u) = f (u′) on the basis of Condition (ii). Together with the rectangular
property, Condition (ii) implies that f (u) = f (u′).

If 1 ≤ |K| ≤ n− 1, then K ̸= /0 and I \K ̸= /0. Let u∗ ≡ (u′i,uK\{i},u′I\{K∪{i}}). Together with Con-
dition (ii), this implies that u∗j( f (u∗j ,u

′
I\{ j})) = u∗j( f (u′j,u

′
I\{ j})) for each j ∈ I. 21 Together with the

rectangular property, this implies that f (u∗) = f (u′), that is,

f (u′i,uK\{i},u′I\{K∪{i}}) = f (u′i,u
′
K\{i},u′I\{K∪{i}}). (19)

Let u′′I\{i} = (uK\{i},u′I\{K∪{i}}). Together with Condition (i), this implies that ui( f (ui,uK\{i},u′I\{K∪{i}})) =
ui( f (u′i,uK\{i},u′I\{K∪{i}})). Together with strong non-bossiness, this implies that

f (ui,uK\{i},u′I\{K∪{i}}) = f (u′i,uK\{i},u′I\{K∪{i}}) (20)

because the rectangular property implies strong non-bossiness by Proposition 2 of Saijo, Sjöström, and
Yamato (2007). By (19) and (20), we find that f (ui,uK\{i},u′I\{K∪{i}}) = f (u′i,u

′
K\{i},u′I\{K∪{i}}).

21Note that u∗j = u′j for each j ∈ I \K by definition.
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Claim 2. f satisfies the n-rectangular property only if f satisfies the rectangular property.

Let u,u′ ∈ U be such that u j( f (u j,u′I\{ j})) = u j( f (u′j,u
′
I\{ j})) for each j ∈ I. Let K ≡ I. Together

with the n-rectangular property, these imply f (u) = f (u′).
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