
ソシオネットワーク戦略ディスカッションペーパーシリーズ        ISSN 1884-9946        

第 50 号 2017 年 11 月 

RISS Discussion Paper Series 

No.50  November, 2017 

 

 

  

 
 

文部科学大臣認定 共同利用・共同研究拠点 

関西大学ソシオネットワーク戦略研究機構 

 

The Research Institute for Socionetwork Strategies, 
Kansai University 

Joint Usage / Research Center, MEXT, Japan 

Suita, Osaka, 564-8680, Japan 

URL: http://www.kansai-u.ac.jp/riss/index.html 

e-mail: riss@ml.kandai.jp 

tel. 06-6368-1228 

fax. 06-6330-3304 

An Approximation Algorithm for Multi-unit Auctions:

Numerical and Subject Experiments 
 
 

Satoshi Takahashi, Yoichi Izunaga, Naoki Watanabe 





          

 

 

 

 

 

  

 

 
 

文部科学大臣認定 共同利用・共同研究拠点 

関西大学ソシオネットワーク戦略研究機構 

 

The Research Institute for Socionetwork Strategies, 
Kansai University 

Joint Usage / Research Center, MEXT, Japan 

Suita, Osaka, 564-8680, Japan 

URL: http://www.kansai-u.ac.jp/riss/index.html 

e-mail: riss@ml.kandai.jp 

tel. 06-6368-1228 

fax. 06-6330-3304 

 
An Approximation Algorithm for Multi-unit Auctions: 

Numerical and Subject Experiments 
 
 

Satoshi Takahashi, Yoichi Izunaga, Naoki Watanabe 



 



An Approximation Algorithm for Multi-unit Auctions:

Numerical and Subject Experiments∗

Satoshi Takahashi† Yoichi Izunaga‡ Naoki Watanabe§

November 3, 2017

Abstract

In multi-unit auctions for a single item, the Vickrey-Clarke-Groves mech-

anism (VCG) attains allocative efficiency but suffers from its computational

complexity. Takahashi and Shigeno (2011) thus proposed a greedy based ap-

proximation algorithm (GBA). This paper reports that in a subject experiment

there was truly a difference in efficiency rate but no significant difference in

seller’s revenue between GBA and VCG. It is not clear in theory whether each

bidder will submit his or her true unit valuations in GBA. We show, however,

that in a subject experiment there was no significant difference in the number of

bids that obey “almost” truth-telling between GBA and VCG. As for individual

bidding behavior, GBA and VCG show a sharp contrast when a human bidder

competes against machine bidders; underbidding was observed in GBA, while

overbidding was observed in VCG. Some results in a numerical experiment are

also provided prior to reporting those observations.

Keywords: multi-unit auctions, approximation algorithm, experiment

JEL Classification: C92, D44, D82

∗The authors wish to thank Maiko Shigeno, Tatsuyoshi Saijo, Yoshitsugu Yamamoto, and partic-
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1 Introduction

In multi-unit auctions for a single item, the Vickrey-Clarke-Groves mechanism (VCG)

attains allocative efficiency but suffers from its computational complexity. In fact,

the item allocation problem is known to be NP-hard, and thus it is necessary for

us to apply some approximation algorithm to that problem. Kothari et al. (2005)

considered the item allocation problem in reverse auctions as a generalized knapsack

problem and proposed a greedy based 2-approximation algorithm with O(ℓ2) time,

where ℓ is the total sum of numbers of bidders’ anchor values. As far as non-reverse

auctions are concerned, however, their algorithm does not necessarily return a solu-

tion the approximation ratio of which is not bounded by two. (We can provide such

an example upon request.) Takahashi and Shigeno (2011) thus proposed another

greedy based 2-approximation algorithm (GBA) with O(ℓ(log n+ lmax)) time, where

lmax is the maximum number of anchor values among those of bidders.1

In GBA, the highest unit bidder is tentatively given the unit and the other unit

bids of the tentative winner are updated in the process for determining the final

item allocation. This paper reports that in a subject experiment there was truly a

difference in efficiency rate but no significant difference in seller’s revenue between

GBA and VCG. It is not clear in theory whether each bidder has an incentive to

submit his or her true unit valuations in GBA. In the subject experiment there was

no significant difference in number of bids that obey “almost” truth-telling between

GBA and VCG. As for individual bidding behavior, GBA and VCG show a sharp

contrast when a human bidder competes against machine bidders; underbidding

was observed in GBA, while overbidding was observed in VCG. Some results in a

numerical experiment are also provided prior to reporting our main observations.

In the numerical and subject experiments, it is assumed that for all bidders,

each unit valuation is drawn independently of the other unit valuations, i.e., in

random order. We might alternatively assume that unit valuations are given to each

bidder in monotone non-increasing order. In a preliminary experiment for VCG

conducted prior to our main sessions, however, the standard deviation of seller’s

revenue observed in monotone non-increasing order of unit valuations is much larger

than the one observed in random order of those. We thus conducted the experiments

with unit valuations which were drawn in random order.

1Takahashi and Shigeno (2011) developed another 2-approximation algorithm, which is based on

Dyer’s polynomial time algorithm (Dyer, 1984), and they showed in a numerical experiment that

the GBA computed faster and approximated better than that alternative algorithm.
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The rest of this paper is organized as follows. Section 2 introduces the model

of multi-unit auctions for a single item and describes how GBA and VCG derive

allocations of the item. Section 3 displays the results of a numerical experiment on

computation time and efficiency rate under the assumption of truth-telling bidding.

Section 4 shows our main observations in a subject experiment. Section 5 notes some

remarks, referring to a preliminary experiment for VCG and other papers related to

our results.

2 The model

This session concisely describe the the Vickrey-Clarke-Groves mechanism (VCG)

and its greedy base 2-approximation algorithm (GBA).

2.1 VCG mechanism

Consider a multi-unit auction for a single item, where a seller wishes to sell M units

of a single item and solicits bids from n buyers. Let N = {1, ..., n} be the set of

buyers (bidders). For each bidder i ∈ N , denote his or her anchor values on the

quantity by {dki | k = 0, ..., ℓi}, where dk−1
i < dki for all k with 1 ≤ k ≤ ℓi, and denote

his or her unit bids by {bki | k = 1, ..., ℓi}, where bki is a buyer price in half-open

range (dk−1
i , dki ] for k = 1, ..., ℓi. It is assumed that d0i = 0 and dℓii ≤ M for every

bidder i ∈ N . Each bidder i has a list of his or her anchor values and unit bids, i.e.,

{dki | k = 0, ..., ℓi} and {bki | k = 1, ..., ℓi}. Let ℓ =
∑

i∈N ℓi.

Define bidder i’s bid function: R+ → R by

Bi(y) =

{
bki · y (dk−1

i < y ≤ dki , k = 1, ..., ℓi),

0 (y = d0i , y > dℓii ).
(1)

Figure 1 illustrates an example of the bid function. For each bidder i ∈ N , denote

his or her unit valuations by {vki | k = 1, ..., ℓi}. Define bidder i’s valuation function

Vi : R+ → R by

Vi(y) =

{
vki · y (dk−1

i < y ≤ dki , k = 1, ..., ℓi),

0 (y = d0i , y > dℓii ).
(2)

A vector x = (x1, x2, . . . xn) that satisfies
∑

i∈N xi ≤ M and xi ≥ 0 for any i ∈ N

is called an allocation, where xi is the units of the item assigned to bidder i ∈ N in

the allocation.
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Figure 1: A bid function. The unit bids represent the gradients of the bid function, and the

anchor values stand for its discontinuous points.

An item allocation problem (AP )B is to find allocations that maximize the total

amount of bids is formulated by

(AP )B maximize
∑
i∈N

Bi(xi)

subject to
∑
i∈N

xi ≤ M

xi ≥ 0 (∀i ∈ N).

(3)

Another problem (AP )V is formulated in the same way by

(AP )V maximize
∑
i∈N

Vi(xi)

subject to
∑
i∈N

xi ≤ M

xi ≥ 0 (∀i ∈ N),

(4)

in order to find efficient allocations that maximize the total amount of valuations.

The payment scheme is as follows. Denote by x∗ an optimal solution of (AP )B.

Let x−j be an optimal solution of the following restricted item allocation problem

(AP )−j
B with the set of bidders N−j = N \ {j}.

(AP )−j
B maximize

∑
i∈N−j

Bi(xi)

subject to
∑

i∈N−j

xi ≤ M

xi ≥ 0 (∀i ∈ N−j).

(5)
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In the VCG, bidder j’s payment pj is determined by

pj =
∑

i∈N−j

Bi(x
−j
i )−

∑
i∈N−j

Bi(x
∗
i ). (6)

Under this payment scheme, it is the dominant strategy for each bidder to truth-

fully tell his or her unit valuations by bidding; Thus, the optimal solutions of (AP )B

maximize the total amount of valuations in (AP )V . We have to, however, compute

as many as O(n) times in (AP )B to find an optimal solution. It becomes more diffi-

cult to compute an allocation and payments in realistic time, as the number of either

bidders or units of the item is larger. We thus need to find faster approximation

algorithms to solve the item allocation problem.

2.2 Greedy based algorithm

This subsection describes a GBA which was proposed by Takahashi and Shigeno

(2011). This algorithm uses the slope function pki : R → R, for any i ∈ N and all k

with 0 < k ≤ ℓi. Denote by pki (y) the gradient of bid function Bi between a unit of

y and each anchor value dki , i.e.,

pki (y) =
(Bi(d

k
i )−Bi(y))

(dki − y)
. (7)

The GBA takes the following process of four steps.

Step 1 Set xi = 0 for any i ∈ N .

Step 2 Find a pair (i∗, k∗) such as pk
∗

i∗ (xi∗) = max{pki (xi) | i ∈ N, xi < dki }. If

pk
∗

i∗ (xi∗) ≤ 0, then return x, otherwise, update xi∗ = dk
∗

i∗

Step 3 If
∑

i∈N xi < M , go to Step 2.

Step 4 Make two solutions x̂ and x̃ by

x̂i =

{
xi (i ̸= i∗),

M −
∑

j ̸=i∗ xj (i = i∗),
and x̃i =

{
0 (i ̸= i∗),

xi∗ (i = i∗).

If
∑

i∈N Bi(x̂i) >
∑

i∈N Bi(x̃i), then return x̂, otherwise, return x̃

The process is initialized in Step 1. In Step 2, GBA finds a pair (i∗, k∗) which

maximizes the slope function. If GBA stops in Step 2, i.e. pk∗i∗ (xi∗) ≤ 0, no solution

can improve the objective value from the current solution. The returned solution is

thus optimal. GBA iterates Step 2 until
∑

i∈N xi ≤ M . In Step 4, GBA makes two
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solutions x̂ and x̃. The residual units M −
∑

j ̸=i∗ xj is allocated to bidder i∗ in x̂,

while no unit is allocated to any bidder j ∈ N−i∗ in x̃. GBA compares the objective

values of these two solutions and returns the larger one.

The Ausubel auction (Ausubel, 2004) also has a similar process of updating

the other unit bids of the tentative winners, although the updates are made in

dynamic ascending-bid auctions. The GBA makes the updates in static auctions, as

shown above. This feature of GBA reduces computation time when the number of

bidders or the total sum of numbers of bidders’ anchor values. The GBA finds an

approximate solution of (AP )B, and the objective value obtained by the approximate

solution is at least a half of the optimal objective value in (AP )B. These are formally

stated as the following theorem.

Theorem 1 (Takahashi and Shigeno, 2011) GBA finds a 2-approximation so-

lution of (AP )B in O(ℓ(log n+ lmax)) time, where lmax = maxi∈N ℓi.

The intuition of Theorem 1 on computation time is explained as follows. The

number of iteration in GBA is clearly at most ℓ. If we store max{pki (xi) | xi < dki }
for all i ∈ N in a heap, Step 2 can be performed in O(log n). After Step 2, we need

to compute max{pki∗(xi∗) | xi∗ < dki∗} for updated xi∗ , which runs in O(ℓi∗). The

total running time of Step 2 is thus bounded by O(log n+ lmax). Therefore, the total

running time is bounded by O(ℓ(log n+ lmax)).

The payment scheme is as follows. Denote by x̌ an allocation determined by

GBA. Let x̌−j be an allocation determined by GBA when the set of bidders is

restricted to N−j = N \ {j}. In GBA, bidder j’s payment p̌j is determined by

p̌j =
∑

i∈N−j

Bi(x̌
−j
i )−

∑
i∈N−j

Bi(x̌i). (8)

Under this payment scheme, it is not clear in theory whether each bidder will

truthfully submit his or her unit valuations by bidding in GBA. It is, however, shown

later that in a subject experiment there was no significant difference in the number

of bids that obey “almost” truth-telling between GBA and VCG. The definition of

the almost truth-telling bidding is noted later in Section 4.

In this section, we did not explain the intuition of Theorem 1 on approximation

ratio. Instead, the approximation ratio of GBA against VCG can be confirmed as

well as the computation time in a numerical experiment, the results of which are

shown in the next section.
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3 A numerical experiment

This section displays the results of a numerical experiment which functions as a

control group against part of the observations in the corresponding subject exper-

iment, where bidders are all truth-telling machine bidders. All computations were

conducted on a personal computer with Core i7 CPU (3.4 GHz) and 16GB memory,

and the code was written with python 2.6.5. (The code is available upon request.)

We fix n or M for instances, varying the values of the other variables.

For each bidder i ∈ N , the number of his or her anchor values, ℓi, was indepen-

dently drawn from the set of 15 integers {1, . . . , 15} with equal probability. Then,

for any bidder i ∈ N , anchor values, the number of which is ℓi, were drawn inde-

pendently from the set of integers {1, . . . ,M} with equal probability, arranged in

ascending order, and indexed from 0 to ℓi to construct {dki | k = 0, ..., ℓi}.2 As is

mentioned in Section 1, for any bidder i ∈ N , each unit valuation vki is indepen-

dently drawn from the set of 100 integers {1, . . . , 100} with equal probability. Both

in GBA and in VCG, truth-telling bidders were assumed.

We conducted this numerical experiment by using dynamic programing. Con-

sider an arbitrary ordering on n bidders. For the first k bidders and m units with

0 ≤ m ≤ M , define

T [k,m] := max


k∑

j=1

v(xj) |
k∑

j=1

xj ≤ m,xj ≥ 0 (1 ≤ j ≤ k)

 , (9)

(k ∈ N, 0 ≤ m ≤ M).

The following recurrence relation describes how to solve problem (9) with dynamic

programing.

T [0,m] = 0, (0 ≤ m ≤ M). (10)

T [k,m] = max

{
T [k − 1,m]

max1≤z≤m{T [k − 1,m− z] + vk(z)}

}
, (11)

(k ∈ N, 0 ≤ m ≤ M).

The optimal objective value of (AP )V can be obtained by

max
0≤m≤M

{T [n,m]}. (12)

2There was no case of a tie observed in this numerical experiment.The description of a tie-break

rule is thus omitted here.
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Let n = 50 or M = 200. Tables 1 and 2 show the averages of computation time

and approximation ratio in GBA against VCG, where the approximation ratio is

defined by
approximate value of (AP )V

optimal value of (AP )V
, (13)

which actually measures the efficiency rate of GBA against VCG. In Tables 1 and

2, VCG is denoted as EXACT in order to indicate that the optimal values are used

there. In subject experiments, human bidders do not necessarily behave in such

a way that the optimal values of (AP )V are derived even in VCG. Figures 2 and

3 depict the average computation time which correspond to the instances listed in

Tables 1 and 2, respectively.

Table 1 shows that as the number of units of the item increases, the computation

time in VCG remarkably increases, whereas the increase in computation time is

suppressed in GBA. When the number of bidders, n, does not change, the expected

values of ℓ =
∑

i∈N ℓi and lmax also do not change, respectively. The expected value

of the upper bound of computation time in GBA, O(ℓ(log n + lmax)), is then kept

intact, as far as n is fixed.

As the number of bidders, n, increases, the upper bound of computation time,

O(ℓ(log n + lmax)), is expected to go up in GBA, because the expected value of

ℓ =
∑

i∈N ℓi increases, although lmax ≤ 15 always. Even in this case, Table 2 shows

that GBA finds the solution of (AP )B much faster than VCG.

Note that the approximation ratios shown in Tables 1 and 2 are bounded by 0.62

and 0.92. As is mentioned above, those ratios actually measures efficiency rates of

GBA against VCG. In the next section, we show that the average rates of efficiency

in GBA observed in the subject experiment were more than 0.93, although there

was truly a difference between GBA and VCG. We also show, however, that there

was no significant difference in seller’s revenue between GBA and VCG. The rate of

efficiency is defined with the observed value and the optimal value (EXACT) both

in GBA and in VCG.
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Table 1: Averages of computation time and approximation ratio in GBA against VCG. Each

instance is represented by the numbers of bidders and units, i.e., (n,M), where n = 50. VCG is

noted as EXACT. As the number of units of the item increases, the computation time in VCG

increases, whereas GBA suppresses the increase in computation time. The expected value of the

upper bound of computation time in GBA, O(ℓ(logn+lmax)) is kept intact, because n, the expected

value of ℓ =
∑

i∈N ℓi, and the expected value of lmax are not changed.

Instance Computation time (sec.) Approx. ratio

GBA EXACT GBA/EXACT

(50,50) 0.00227 0.10300 0.727

(50,100) 0.00201 0.38864 0.736

(50,150) 0.00190 0.83885 0.623

(50,200) 0.00217 1.52568 0.723

(50,250) 0.00202 2.36149 0.633

(50,300) 0.00222 3.40518 0.775

(50,350) 0.00215 4.70473 0.815

(50,400) 0.00203 5.91917 0.874

Figure 2: Number of units of the item and computation time. n = 50. VCG is noted as EXACT.
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Table 2: Averages of computation time and approximation ratio in GBA against VCG. Each

instance is represented by the numbers of bidders and units, i.e., (n,M), where M = 200. VCG

is noted as EXACT. As the number of bidders, n, increases, the upper bound of computation

time, O(ℓ(logn+ lmax)), is expected to go up in GBA, because the expected value of ℓ =
∑

i∈N ℓi

increases, although lmax ≤ 15 always. Even in that case, however, GBA completes the computation

much faster than VCG.

Instance Computation time (sec.) Approx. ratio

GBA EXACT GBA/EXACT

(10, 200) 0.00119 0.70154 0.915

(50, 200) 0.00409 3.44612 0.804

(100, 200) 0.00768 6.81375 0.837

(200, 200) 0.01440 13.54417 0.700

(400, 200) 0.02869 27.49757 0.715

(800, 200) 0.05754 55.84550 0.760

(1000, 200) 0.06933 69.44206 0.760

(5000, 200) 0.34113 348.4999 0.753

(10000, 200) 0.72498 698.56540 0.622

Figure 3: Number of bidders and computation time. M = 200. VCG is noted as EXACT.
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4 The subject experiment

4.1 Experimental design

In this experiment, 5 units of an item are auctioned off to 3 bidders, where the item

is a virtual object, i.e., n = 3 and M = 5. Each session consists of 20 rounds in

total, and 2 sessions are paired; In a session GBA is applied in the first 10 rounds

and VCG is applied in the second 10 rounds, and the order of GBA and VCG is

reversed in another session. (Every subject thus bids in both treatments, although

he or she can participate in only one session. In analysis, the data should be merged

in order to cancel the effect of the order of treatments on the results.)

For every bidder i, the number of anchor values is set as ℓi = 5, and thus his or

her anchor values are d0i = 0, d1i = 1, ..., d5i = 5. As is mentioned in Section 1, for

each bidder i and for each unit of the item, his or her unit valuation for k units of

the item, vki (k = 1, . . . , 5), is independently and uniformly distributed over integers

between 1 and 200. At the beginning of each round, each bidder i is given his or

her unit valuations {vki | k = 1, ..., ℓi} by a computer, which are his or her private

information. Then, each bidder i submits his or her unit bids {bki | k = 1, ..., ℓi}.
When k units of the item is allocated to bidder i, he or she receives the points that

amounts vki · k minus his or her payment.

In each round, there is a 120-second time limit for submitting unit bids. If none

of three bidders bids within the time limit, every bidder of those three then obtains

zero point for that round. The units assigned to a bidder and his or her payment are

shown to the bidder in 5 seconds at the end of each round. The cumulative points

of bidders are not shown to them (It is thus prohibited for subjects to take notes

throughout the session.

Subjects are informed that they will be paid according to the total points they

obtain in 6 rounds (3 from the first 10 rounds and 3 from the subsequent 10 rounds)

randomly selected by a computer at the end of each session, with the pre-determined

exchange rate in addition to the show-up fee. In this experiment, the exchange rate

was 1 point = 1 JPY and the show-up fee was 1500 JPY.

At the beginning of each session, GBA (or VCG) applied in the first 10 rounds

is explained with the general instruction. There is an intermission after the first

10 rounds so that VCG (or GBA) applied in the second 10 rounds is explained.

Before proceeding to the experiment, subjects play 1 round for practice to familiarize

themselves with the software.
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4.2 Results

A computerized laboratory experiment was conducted at the University of Tsukuba

in Japan. We developed a software which uses python cgi for the experiment. We had

4 sessions in February 2014 and 4 sessions in January 2016. Each session conducted

in 2016 involves 8 groups of 3 subjects. At the beginning of each round, all subjects

were randomly re-grouped into 8 groups by a computer. Subjects are not informed

of who are in the same group. Each session conducted in 2014 involves 8 groups

of 1 subject as a human bidder and 2 machine bidders which were programed as

truth-telling bidders. At the beginning of each session, each subject was randomly

assigned to one of 8 groups by a computer. This assignment was fixed throughout

that session.

Subjects were recruited from all over the campus, and undergraduate students

whose major is engineering were most populous among them. Once a subject partic-

ipated in a session, he or she was prohibited to participate in any other sessions for

this experiment. Upon arrival, they were provided with a written instruction, and

then the experimenter read it around. (The instruction is available upon request.)

Subjects could ask questions regarding the instruction by raising their hand and the

experimenter gave the answers to those questions privately. Any communication

among subjects were strictly prohibited; Thus, their interactions were only through

the information they enter in their computer screens. Each session lasted about 100

minutes including the instruction. There was no observation of bidding made after

the time limit. Features of the experimental sessions are summarized in Table 3.

Table 3: Features of the experimental sessions.

session machine show-up point-to- # of session avg. point

no. bidders fee (JPY) JPY ratio subj. date per subject

1 yes 1500 1.0 8 Feb.13, 2014 513.75

2 yes 1500 1.0 8 Feb.13, 2014 609.63

3 yes 1500 1.0 8 Feb.14, 2014 295.38

4 yes 1500 1.0 8 Feb.14, 2014 169.29

5 no 1500 1.0 24 Jan.30, 2016 510.42

6 no 1500 1.0 24 Jan.30, 2016 641.04

7 no 1500 1.0 24 Jan.31, 2016 284.75

8 no 1500 1.0 24 Jan.31, 2016 583.71
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In Table 3, there were some outliers of unit bids in sessions 3, 4, and 7, which

were extraordinarily higher than the corresponding unit valuation; Thus, the average

points per subject were lower than those in the other sessions. We dropped extreme

outliers in our regression analysis of subjects’ bidding behavior, the result of which

is shown later in this section.

The rate of efficiency in GBA (or in VCG) are defined by

observed value of (AP )V
optimal value of (AP )V

, (14)

where the observed value of (AP )V is calculated with an allocation x observed when

GBA (or VCG) is applied. The rate of the seller’s revenue (profit) in GBA (or in

VCG) is defined by

observed total amount of payments

optimal total amount of payments
. (15)

The optimal total amount of payments is represented by
∑

j∈N pj , where pj is cal-

culated for each j ∈ N according to (6). Our main observation is then stated as

follows.

Observation 1 In the subject experiment, there was a difference in efficiency rate

but no significant difference in seller’s revenue between GBA and VCG.

Tables 4 and 5 show the average rates of efficiency and seller’s revenue (profit)

observed in 2014 and 2016, respectively. We analyzed the data taken from the last 5

rounds in each treatment to allow subjects the opportunity to learn better bidding

behavior in GBA and VCG. Each treatment had 4 sessions, and there were 8 groups

in each session, and thus the sample size is 160 for each treatment. The data were

merged for each treatment in order to cancel the effect of the order of treatments

on the results. The p-values for the permutation test (perm. test) are reported

under each panel which corresponds to the rates of efficiency and seller’s revenue,

respectively. The null hypotheses on the rates of efficiency was rejected at the 5%

significance level with both data taken in 2014 and in 2016. The null hypotheses on

the rates of seller’s revenue, however, could not be rejected at the 5% significance

level with both data taken in 2014 and in 2016.
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Table 4: Average rates of efficiency and seller’s revenue (profit) in 2014.

efficiency profit

GBA VCG GBA VCG

mean 0.9341 0.9626 1.0069 0.9828

st.dev. 0.0277 0.0345 0.0651 0.0402

p-value (perm.) 0.0068 0.1703

Table 5: Average rates of efficiency and seller’s revenue (profit) in 2016.

efficiency profit

GBA VCG GBA VCG

mean 0.9365 0.9737 0.9037 0.8978

st.dev. 0.0302 0.0220 0.0993 0.0775

p-value (perm.) 0.0001 0.8471

As noted at the end of subsection 2.1, the VCG mechanism, in theory, induces

allocative efficiency by providing every bidder with an incentive to submit his or her

valuations truthfully for each unit. In Section 3, the numerical experiment suggests

that even under the assumption of truth-telling bidding, GBA is inferior to VCG in

terms of the efficiency rate measured by (15). Thus, in order to confirm this feature

of GBA also in the subject experiment, we counted the number of unit bids which

satisfy
|unit value− unit bid|

unit value
≤ 0.05, (16)

and the number of efficiency rates each of which satisfies

efficiency rate ≥ 0.95. (17)

We say that a unit bid obeys 95% truth-telling when it satisfies (16) and that an

auction outcome is 95% efficient when the rate of efficiency satisfies (17). The next

observation is similar to the one confirmed in the numerical experiment.

Observation 2 In the subject experiment, there was no significant difference in

number of bids that obey 95% truth-telling between GBA and VCG, whereas there

was clear difference in number of 95% efficiency between GBA and VCG.
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Table 6 shows the numbers of 95% truth-telling unit bids and 95% efficiency

observed in each pair of 2 sessions. The sample size is 1200 for 95% truth-telling

unit bids and it is 80 for 95% efficiency. The p-values for the Fisher exact test

(Fisher test) are reported under each panel which corresponds to truth-telling and

efficiency. The null hypotheses on 95% truth-telling could not be rejected at the 5%

significance level with both data taken in 2014 and in 2016. The null hypotheses on

95% efficiency was rejected at the 5% significance level with both data taken in 2014

and in 2016. Therefore, Observation 2 is consistent with the result in the numerical

experiment. Observation 2 also says that in the subject experiment there was no

significant difference in number of bids that obey “almost” truth-telling between

GBA and VCG, although it is not clear in theory that each bidder will truthfully

tell his or her unit valuations by bidding in GBA.

Table 6: Numbers of 95% truth-telling bidding and in 95% efficiency.

truth-telling efficiency

GBA VCG GBA VCG

sessions 1-2 996 964 57 71

p-value (Fisher) 0.1019 0.0095

sessions 3-4 963 975 48 68

p-value (Fisher) 0.5690 0.0007

sessions 5-6 498 527 57 69

p-value (Fisher) 0.2318 0.0325

sessions 7-8 444 426 52 70

p-value (Fisher) 0.4704 0.0014

Finally, we report the regression results on the subjects’ bidding behavior. For

each bidder, each unit valuation is drawn independently of the other unit valuations.

We thus analyze the data unit by unit. If the absolute value of a unit valuation minus

a unit bid falls within 5% of all those absolute values, we then dropped the data

as an outlier for our regression analysis. Tables 7 and 8 show the regression results

with the data taken in 2014 and 2016, respectively. Figures 4 to 7 depict unit

valuations and unit bids observed in 2014 and 2016, respectively. The coefficients

on valuations were less than one and they are statistically significant, except in the

session for VCG conducted in 2014.
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Observation 3 In the subject experiment, subjects would underbid, except in the

sessions for VCG in which human bidders bid against truth-telling machine bidders.

Table 7: Results of regression analysis in 2014.

GBA

# of units 1 2 3 4 5

Constant -2.5966 -3.2360 -0.3177 -1.8116 -2.0598

p-value 0.0370 0.0210 0.7930 0.0790 0.0140

Valuation 0.9832 0.9850 0.9500 0.9850 0.9982

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

R-squared 0.9140 0.8980 0.9050 0.9350 0.9590

VCG

# of units 1 2 3 4 5

Constant -1.6190 -1.0880 -1.1676 -0.9239 -0.3216

p-value 0.0270 0.0450 0.0190 0.1440 0.7950

Valuation 1.0029 1.0069 1.0114 1.0085 1.0233

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

R-squared 0.9660 0.9800 0.9840 0.9710 0.9030
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Figure 4: GBA in 2014.
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Figure 5: VCG in 2014.
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Table 8: Results of regression analysis in 2016.

GBA

# of units 1 2 3 4 5

Constant -1.1523 -3.6660 -2.8788 -4.0178 -6.9879

p-value 0.6980 0.1620 0.3110 0.1490 0.0000

Valuation 0.8618 0.9063 0.8848 0.9154 0.9761

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

R-squared 0.7060 0.7720 0.7220 0.7580 0.8700

VCG

# of units 1 2 3 4 5

Constant 0.7320 -6.3762 -6.5492 -5.3207 -6.4748

p-value 0.8420 0.0440 0.0400 0.0960 0.0050

Valuation 0.7857 0.9030 0.9219 0.9173 0.9693

p-value < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

R-squared 0.5590 0.6940 0.7130 0.7060 0.8170
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Figure 6: GBA in 2016.
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Figure 7: VCG in 2016.

As for individual bidding behavior, GBA and VCG show a sharp contrast when

a human bidder competes against machine bidders; underbidding was observed in

GBA, while overbidding was observed in VCG.
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5 Final remarks

There is little literature on subject experiments which investigated how approxima-

tion algorithms of the VCG mechanism work in the multi-unit non-reverse auctions

to which Kothari et al. (2005) referred. Kagel and Levin (2001), for instance, stud-

ied subjects’ bidding behavior in multi-unit auctions, but they imposed a uniform

price on all units of the item.3 We thus carefully prepared for the experimental

design. In this paper, it is assumed that for all bidders, each unit valuation is drawn

independently of the other unit valuations. As is mentioned in Section 1, we found

that it was better for us to do so from a result of a preliminary experiment.

The preliminary experiment was conducted also at the University of Tsukuba.

We had 4 sessions on February 13 and 14 in 2015. Each session consists of 20 rounds

in total, and 2 sessions are paired; In a session unit valuations were drawn in random

order in the first 10 rounds and they were drawn in monotone non-increasing order in

the second 10 rounds, and the order of the display of unit valuations was reversed in

another session. The other part of the experimental design was completely the same

as the one described in this paper. In the data taken from last 5 rounds in each

treatment, the average rate of seller’s revenue was 0.977 with standard deviation

0.0132 when unit valuations are drawn in random order, whereas it was 1.0564 with

standard deviation 0.2581. We will show more detail comparisons between those

two treatments in another paper.

At the end, we leave two remarks for future investigation. Chen and Takeuchi

(2010) reported underbidding in VCG, although they studied combinatorial auc-

tions. Kagel et al. (2001) conducted an experiment in which a human bidder with

flat demand for two units competes against machine bidders each demanding a sin-

gle unit, and they reported overbidding of each human bidder for both units. It is

interesting that Observation 3 is similar to these results, although the direct com-

parison to them is not appropriate. The other remark is on Observation 2; Not only

in VCG but also even in GBA, the number of 95% truth-telling unit bids in the

environment of a human budder and two machine bidders is about twice as many as

the one in the environment of all human bidders, although it is not clear in theory

whether each bidder has an incentive to submit his or her true unit valuations in

GBA. Thus, it is an open question to identify some reason why subjects learned

such a bidding behavior.

3Kagel and Levin (2016) is a comprehensive survey of experimental results in various auctions

and mechanisms. Dobzinski and Nisan (2015) showed the latest theory in multi-unit auctions.
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Appendix: Examples in the instruction

In the instruction, we explained GBA and VCG with the following examples.

GBA

Item allocation problem: 5 steps in total. Unit valuations are given as below. Bid-

ders are asked to bid per unit for each unit.
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! ! !! "! #!

$%&&'(!!! )*+,*-%./! 012!! 312"! 442#!

5%&! 642!! 442"! 712#!

$%&&'(!"! )*+,*-%./! 712!! 612"! 342#!

5%&! 712!! 3#2"! 342#!

 Fig. 1 

1. Find the highest unit bid. Give “tentatively” the unit to the highest unit

bidder.

2. Update the other unit bids of the highest unit bidder in the following way;

The highest unit bid is 75 cast by bidder 1 for 1 unit.

• updated unit bid for 2 units =
55 ∗ 2− 75 ∗ 1

(2− 1)
= 35

• updated unit bid for 3 units =
40 ∗ 3− 75 ∗ 1

3− 1
= 22.5.

 

! ! !! "! #!

$%&&'(!!! )*+,*-%./! 012!! 312"! 442#!

5%&! ! #42"! ""642#!

$%&&'(!"! )*+,*-%./! 712!! 812"! 342#!

5%&! 712!! 3#2"! 342#!

Fig. 2 

3. Find the highest (updated) unit bid. Give tentatively the corresponding unit

to the highest (updated) unit bidder.

This bidder is also called a “tentative winner”.

4. • If all units are just assigned, the assignment is then implemented.

• If some units are not assigned, go to step 2.

• If the number of units is less than the sum of assigned units (there is the

“excess demand”), then go to step 5.

The highest (updated) unit bid is 65 cast by bidder 2 for 3 units. In the first

round, bidder 1 was assigned 1 unit as a tentative winner, and thus there is

the excess demand. Thus, go to step 5.

5. Choose such an allocation that maximizes the total amount of bids among the

allocations of tentative winners.

• 1 unit to bidder 1 and 2 units to bidder 2.

Total amount of bids = 75 ∗ 1 + 63 ∗ 2 = 201
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• 0 unit to bidder 1 and 3 units to bidder 3.

Total amount of bids = 65 ∗ 3 = 195

Choose Allocation 1.

GBA: payment

Payment Determination: in the same way as in Exact VCG.

payment of bidder i (winner) =

(total amount of bids in the auction that excludes bidder i:

65*3 for bidder 1, 75*1+35*2 for bidder 2)

− (total amount of bids in the original auction)

+ (bidder i’s bid for the unit assigned to i)

(Allocation 1) · · · 1 unit to bidder 1 unit and 2 units to bidder 2.

• payment of bidder 1 = (65 ∗ 3)− 201 + (75 ∗ 1) = 69

• payment of bidder 2 = (75 ∗ 1 + 35 ∗ 2)− 201 + (63 ∗ 2) = 70

Exact VCG
 

! ! !! "! #!

$%&&'(!!! )*+,*-%./! 012!! 312"! 442#!

5%&! 612!! 442"! 412#!

$%&&'(!"! )*+,*-%./! 712!! 612"! 342#!

5%&! 712!! 312"! 342#!

Fig. 3 

Choose such an allocation that maximizes the total amount of bids among all

possible allocations; (0, 0): 0, (1, 1): 70*1+40*1=110 (1, 0): 70*1=70, (2, 0):

55*2=110, (3, 0): 50*3=150, (0, 1): 40*1=40, (0, 2): 60*2=120: (0, 3): 65*3=195,

(1, 2): 70*1+60*2=190, (2,1): 55*2+40*1 =150.

Choose (0, 3). The total amount of bids is 195, which is less than the value GBA

gives, i.e., 201.
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