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Abstract

This study examines departure time decisions in Vickrey’s bottleneck model by in-

corporating bounded rationality through a quantal response equilibrium (QRE) frame-

work. Traditional bottleneck models assume perfect rationality and consequently may

fail to capture real-world commuter behavior. To address this limitation, a discrete

version of the bottleneck model was developed and experimentally tested to deter-

mine the predictive performance of QRE and symmetric mixed-strategy equilibrium

(SMSE). In a controlled laboratory setting with two experimental conditions, the

results revealed that while departure time choices initially deviated from SMSE pre-

dictions, they progressively became closer over successive rounds. Nevertheless, QRE

consistently demonstrated a superior fit compared to SMSE under both conditions,

particularly in explaining persistent delays in departure choices. Based on two out-

of-sample validation measures, QRE outperformed SMSE in modeling commuters’

departure time decision patterns. These results highlight the importance of integrat-

ing bounded rationality into bottleneck congestion models to improve the predictive

power of commuter behavior modeling.
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1 Introduction

The bottleneck model proposed by Vickrey (1969) serves as a foundational framework for

extensive research on rush hour traffic congestion dynamics. Since its inception, the model

has been adapted by incorporating more realistic assumptions, thus enhancing its appli-

cability in empirical research, urban planning, and transportation policy.1 A significant

innovation of Vickrey’s model is its ability to endogenously determine patterns of com-

muters’ departure time choices (Arnott et al., 1998; Arnott, 1998). In its simplest form,

as articulated by Arnott et al. (1990, 1993), the bottleneck model describes commuters

traveling from home to work on a single road with a single bottleneck. When the flow of

commuters exceeds the bottleneck’s limited service capacity, a queue forms, resulting in

physical impossibility for all commuters to arrive at a common work-starting time. Con-

sequently, some commuters experience schedule delays when arriving either early or late.

In this framework, commuters independently and simultaneously select their departure

times to minimize travel costs, which comprise both travel time and schedule delay costs.

In equilibrium, all commuters incur the same travel cost and cannot get better off by

unilaterally altering their departure times. Given that commuters differ in their schedule

delay costs, this equilibrium condition necessitates that the level of bottleneck congestion,

and consequently, the pattern of commuters’ departure times, evolves throughout the peak

period.

The equilibrium patterns of departure time choices and their theoretical implications

hold true only when all the model assumptions are satisfied. The assumption that often

draws criticism is perfect rationality. Commuters may exhibit bounded rationality, which

limits their ability to make optimal decisions owing to cognitive constraints, insufficient

information, and various external factors. However, many existing models do not account

for the possibility of errors in commuters’ departure time decisions, implying that indi-

viduals can always flawlessly optimize their choices. The first attempt to address this

limitation in the commuter departure time choice problem was made by Mahmassani &

Chang (1987), who introduced the concept of bounded rational user equilibrium (BRUE).

This framework incorporates the satisficing approach proposed by Simon (1955), which

allows commuters to select options that meet their minimum acceptability criteria rather

than exhaustively pursuing an optimal choice.

This study incorporates bounded rationality into a discrete version of the simplest

bottleneck model formulated by Arnott et al. (1990, 1993), using the notion of quantal

response equilibrium (QRE), first proposed by McKelvey & Palfrey (1995). The discrete

1Li et al. (2020) is an excellent reference for a review of the bottleneck model literature over the last

50 years.
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model is structured as a non-cooperative game involving a finite number of commuters, dis-

crete departure times, and complete information. While Nash equilibrium, the canonical

solution concept of non-cooperative games, requires that players form correct beliefs about

the behavior of other players and best respond to these beliefs, these assumptions may not

hold in practice. QRE relaxes the best-response requirement of Nash equilibrium while

preserving the assumption of correct beliefs in a stochastic sense. QRE has successfully

explained systematic deviations observed in a wide range of experimental games, includ-

ing centipede games (McKelvey & Palfrey, 1998), traveler’s dilemma games (Capra et al.,

1999), private value auctions (Goeree et al., 2002), imperfect price competitions (Capra

et al., 2002), all-pay auctions (Gneezy & Smorodinsky, 2006), voter participation games

(Levine & Palfrey, 2007), and volunteer’s dilemma games (Goeree et al., 2017; Kawagoe

et al., 2018, 2023). In transportation research, QRE has been used to study route choice

behavior (Zhao & Huang, 2014; Dechenaux et al., 2014), but not departure time choice

behavior.2

This study examines the extent to which aggregate departure time choice behavior

can be explained by QRE. To accomplish this goal, this study adopts an experimental

economics approach, which provides a more reliable source of data due to its greater

control over experimental conditions.3 The bottleneck model is highly stylized, and all

of its assumptions may not be satisfied by naturally occurring data, undermining the

ability to either support or refute its theoretical predictions. In contrast, an experimental

approach allows researchers to determine the method of data generation. Researchers

maintain control over the strategies available to participants, the information they receive,

and how they evaluate outcomes while holding constant other variables that may influence

behavior outside the model.

There is a small but growing body of experimental research on bottleneck models

(Schneider & Weimann, 2004; Gabuthy et al., 2006; Ziegelmeyer et al., 2008; Daniel et al.,

2009; Sun et al., 2017; Yang et al., 2022; Otsubo et al., 2023; Liu et al., 2023).4 Although

these studies vary in their model setups and experimental designs, it is common to all

of them that commuters’ departure time choice behavior is characterized through equilib-

rium solutions, including user equilibrium (Sun et al., 2017; Liu et al., 2023), pure-strategy

equilibrium (Schneider & Weimann, 2004; Gabuthy et al., 2006; Yang et al., 2022), and

mixed-strategy equilibrium (Ziegelmeyer et al., 2008; Daniel et al., 2009; Yang et al., 2022;

Otsubo et al., 2023). The findings of these studies have been mixed. Those employing

user or pure-strategy equilibrium predictions find no supporting evidence for these equi-

2Di & Liu (2016) review the models of bounded rational route choice behavior.
3Dixit et al. (2017) reviews the past applications of experimental economics methods to transportation

research.
4Only the experimental studies following the induced value theory (Smith, 1976) are listed here.
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Figure 1: Road with a Single Bottleneck

libria. Conversely, studies using mixed-strategy equilibrium predictions confirm that the

observed aggregate patterns of departure time choices closely correspond with equilibrium

predictions, although some note slight deviations toward later departures.

In this experiment, participants were incentivized through monetary rewards to make a

series of departure time choices that directly influenced their final earnings. The observed

departure time patterns of the participants were compared with symmetric mixed-strategy

equilibrium (SMSE) predictions. The results indicate that the aggregate behavior initially

deviated from the SMSE predictions, demonstrating a trend toward later departures in

the early rounds of the experiment, with the magnitude of this deviation diminishing in

the subsequent rounds. The QRE model was estimated from the data using maximum

likelihood estimation technique and compared with the SMSE based on two measures of

goodness-of-fit: mean square deviation and Euclidean distance. The results demonstrate

that QRE outperforms SMSE in explaining the observed behavior.

The remainder of this paper is organized as follows. Section 2 provides a detailed

description of the discrete version of the bottleneck model and its associated equilibrium

solution. Section 3 describes the experimental design, and Section 4 presents the results

of the study. Finally, Section 5 provides the concluding remarks.

2 Theory

2.1 A Discrete Version of the Bottleneck Model

A group of n identical commuters travels by driving their cars along a single road con-

necting home (O) to work (D) (see Figure 1). Each commuter simultaneously chooses a

departure time t ∈ T = {0, 1, 2, . . . , tL}.
Two sources of disutility are associated with home-to-work trips. The first is the travel

cost. When driving to work, no congestion occurs anywhere except at a single segment

of the road called a bottleneck (e.g., toll gate, tunnel, or bridge). The bottleneck serves

a single car at a time on a first-come, first-served (FCFS) basis. Following Arnott et al.

(1990, 1993), zero travel time is assumed in the segment between home and bottleneck
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entrance and in the segment between bottleneck exit and work. Thus, the travel time

from home to work is the sum of waiting and service times at the bottleneck.

In this study, the service time per car is assumed to be one unit of time. If multiple

departures occur simultaneously, a queue forms behind the bottleneck, and the order of

entering the bottleneck is determined randomly. Let Q(t) be the length of the queue at

time t such that

Q(t) =

0 if t < 0

max{Q(t− 1)− 1, 0} if t ≥ 0.

Suppose that commuter i and m other commuters depart at ti. If the tie is broken in that

k (≤ m) other commuters are ahead of commuter i in the queue, commuter i’s travel time

is

T (t) = Q(t) + k + 1.

The second source of disutility is the cost of schedule delay, i.e., arriving early or late

at the destination. All commuters want to arrive at work at the common arrival time

t∗, but the limited service capacity of the bottleneck makes it impossible to occur. Some

commuters must arrive at work early and bear the cost of waiting until work begins,

whereas some others must arrive late and pay a penalty for doing so.

When commuter i departs at t and her travel time is T (t), she arrives at work at

t+ T (t). Then, commuter i’s schedule delay is given by
t∗ −

(
t+ T (t)

)
if t∗ > t+ T (t)

0 if t∗ = t+ T (t)(
t+ T (t)

)
− t∗ if t∗ < t+ T (t)

Travel cost (TC) is the sum of the travel time cost (TTC) and schedule delay cost

(SDC). The travel cost of commuter i departing at t is given by

TC(t) = αT (t) + βmax
{
0, t∗ −

(
t+ T (t)

)}
+ γmax

{
0,
(
t+ T (t)

)
− t∗

}
,

where α, β, and γ are the shadow prices of travel time, early arrival, and late arrival,

respectively, such that γ > α > β > 0 (Small, 1982). Commuters independently and

simultaneously decide their departure times to minimize travel costs.

Table 1 presents a numerical example of a game with a set of parameters (n, tL, t
∗, α, β, γ) =

(10, 18, 12, 120, 25, 125). Commuter 1 departing alone at t = 2 experienced no waiting at

the bottleneck. The travel cost is

120 · 1 + 25 ·max
{
0, 12−

(
2 + 1

)}
+ 125 ·max

{
0,
(
2 + 1

)
− 12

}
= 345.
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Table 1: Numerical Example with (n, tL, t
∗, α, β, γ) = (10, 18, 12, 120, 25, 125)

Commuter Departure Time Waiting Time Arrival Time Travel Cost

1 2 0 3 345

2 5 0 6 270

3 5 1 7 365

4 8 0 9 195

5 8 1 10 290

6 8 2 11 385

7 8 3 12 480

8 10 2 13 485

9 10 3 14 730

10 13 1 15 615

Commuters 8 and 9 departed at t = 10. The tie was broken in favor of commuter 8.

Commuters 6 and 7 waited ahead of commuter 8 in queue. Commuter 9 had to wait until

commuters 6, 7, and 8 left the bottleneck. The travel costs of commuters 8 and 9 are

120 · 3 + 25 ·max
{
0, 12−

(
10 + 3

)}
+ 125 ·max

{
0,
(
10 + 3

)
− 12

}
= 485

and

120 · 4 + 25 ·max
{
0, 12−

(
10 + 4

)}
+ 125 ·max

{
0,
(
10 + 4

)
− 12

}
= 730,

respectively.

2.2 Symmetric Mixed-Strategy Equilibrium (SMSE)

The experiment employed a common set of parameters (n, tL, t
∗, β, γ) = (10, 18, 12, 25, 125).

This configuration encompassed 19 departure times, ranging from t = 0 to t = 18, with

a common desired arrival time of t = 12. Two experimental conditions, High Alpha and

Low Alpha, were established based on distinct values of α: α = 120 per unit of time in

the High Alpha condition and α = 30 per unit of time in the Low Alpha condition.

This investigation exclusively examines symmetric equilibrium, based on the assump-

tion that all commuters adopt an identical mixed strategy in equilibrium. Table 2 presents

the symmetric mixed-strategy equilibrium (SMSE) for each experimental condition. These

equilibria were computed numerically using the nonstationary Markov chain method de-

scribed by Otsubo & Rapoport (2008). Comparisons between the High Alpha and Low

Alpha conditions indicate that commuters are more likely to avoid departing at the same
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Table 2: Departure time distributions under SMSE

High Alpha Low Alpha

Departure Time
Probability

Cumulative
Probability

Cumulative

Probability Probability

0 0 0 0 0

1 0.022 0.022 0 0

2 0.077 0.099 0 0

3 0.098 0.197 0.077 0.077

4 0.111 0.308 0.761 0.839

5 0.12 0.428 0 0.839

6 0.126 0.554 0 0.839

7 0.126 0.68 0.039 0.877

8 0.11 0.79 0.037 0.914

9 0.083 0.874 0.026 0.94

10 0.065 0.939 0.028 0.968

11 0.047 0.986 0.019 0.987

12 0.014 1 0.013 1

13 0 1 0 1

14 0 1 0 1

15 0 1 0 1

16 0 1 0 1

17 0 1 0 1

18 0 1 0 1

time as others when α is high than when it is low. In the High Alpha condition, depar-

tures are spread across a wider range of departure times, with each commuter departing at

t = 1, 2, 3, . . . , 11, 12 with positive probabilities. Conversely, in the Low Alpha condition,

commuters predominantly depart at t = 4 with a probability of 0.761, whereas departure

times at t = 3, 7, 8, 9, 10, 11, and 12 have small probabilities.

2.3 Quantal Response Equilibrium (QRE)

In a Nash equilibrium, players choose optimal strategies based on their correct beliefs

about other players’ behaviors. The quantal response equilibrium (QRE) model proposed

by McKelvey & Palfrey (1995) relaxes this strict optimality by allowing players to se-

lect better strategies with higher probability and worse strategies with lower probability,

while still requiring that beliefs about others’ strategies match with the equilibrium choice
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Table 3: Expected departure and travel times under QRE

QRE (λ)

Condition 0.002 0.005 0.02 0.5 SMSE

High Alpha Departure Time 7.794 7.082 6.402 6.137 6.122

Travel Time 1.476 1.638 1.941 2.195 2.209

Low Alpha Departure Time 7.797 7.177 6.332 4.848 4.721

Travel Time 1.487 1.712 2.623 4.125 4.229

probabilities.

Denote a mixed strategy by p =
(
p(0), p(1), . . . , p(tL)

)
. Given the belief that all other

commuters play p, a commuter computes the expected travel cost for each departure time.

Denote by ETC
(
t|p

)
the expected travel cost of a commuter departing at t, given p. Each

commuter chooses departure times according to a probability distribution that takes the

following logit form:

p(t) =
e−λ·ETC(t|p)

18∑
k=0

e−λ·ETC(k|p)

,

where λ is a precision parameter ranging from 0 to ∞.5 The QRE for a given value of λ

is the mixed strategy pλ =
(
pλ(0), pλ(1), . . . , pλ(tL)

)
such that for t ∈ T ,

pλ(t) =
e−λ·ETC(t|pλ)

18∑
k=0

e−λ·ETC(k|pλ)

.

When λ = 0, the QRE dictates that all departure times are chosen with equal probability,

that is, pλ(t) =
1
19 for all t ∈ T . As λ approaches infinity, the QRE converges to a Nash

equilibrium. Figure 2 shows the cumulative departure time distributions of QRE across

λ = 0.002, 0.005, 0.02, and 0.5. The solid line represents the SMSE distribution. Under

both conditions, the QRE assigns positive probabilities to departure times outside the

support of the SMSE. With λ = 0.002, the QRE distribution is nearly uniform across

departure times. As λ increases, the QRE distribution progressively moves toward the

SMSE distribution. When λ = 0.5, the QRE distribution almost perfectly overlaps with

the SMSE distribution under both conditions.

The expected values for departure and travel times under QRE are summarized in

Table 3. Lower λ values correspond to more dispersed departure time choices under both

experimental conditions. As λ increases, the expected departure and travel times approach

5This study assumes homogeneity in bounded rationality, i.e., a common λ value across all players. For

a review of heterogeneous QRE models, see Chapter 4 of Goeree et al. (2002).
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Figure 2: Cumulative probability distributions under QRE by Condition

the SMSE predictions. If participants exhibit bounded rationality, the mean values of the

observed departure and travel times are expected to be larger and smaller, respectively,

than those of the SMSE under both conditions.

3 Experiment

The experiment was conducted in October 2023 at the Experimental Economics Labo-

ratory of the Research Institute for Socionetwork Strategies (RISS), Kansai University,

Osaka, Japan. A total of 120 student participants from various fields of study were re-

cruited using ORSEE software (Greiner, 2015). The experiment used a between-subjects

design with two experimental conditions: High Alpha and Low Alpha. There were six ses-

sions, with three sessions per condition, and 20 participants were invited for each session.

None of the participants were allowed to participate in more than one session.

Upon arrival at the laboratory, the participants were randomly seated in individual

computer terminals. They were given written instructions and asked to read them silently

at their own pace.6 Any form of communication between them was strictly prohibited, and

the questions were answered individually by the experimenter.

The experiment was programmed using oTree (Chen et al., 2016). At the beginning of

each session, two equal-sized groups of 10 participants each were randomly formed. The

6The instructions (written in Japanese) are available upon request.
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group composition was the same throughout each session. Participants played the same

game 40 times (40 rounds). Although there was no interaction between the two groups,

the entire session progressed from one round to the next and ended simultaneously.

Each of the 40 rounds is structured in the same manner. The computer showed a

decision screen that displayed all 19 departure times restricted to 5 min intervals between

8:00 (t = 0) and 9:30 (t = 18), with a common desired arrival time of 9:00 (t = 12).

Each participant was asked to choose their departure time without time pressure. Once

all 20 participants submitted their departure time decisions, a results screen provided each

participant with feedback information limited to their own decision (i.e., departure time,

arrival time, travel time, etc.) and associated results (i.e., travel cost, payoff, etc.) for the

round, not the decisions and results of other participants. Hence, it was impossible for

any participant to picture the distribution of departure time choices of other participants.

The shadow price of traveling time, α, was set to 120 points per 5 min (24 points per min)

in the High Alpha condition and 30 points per 5 min (6 points per min) in the Low Alpha

condition.

At the end of the session, a summary screen displayed the total number of points that

the participants had accumulated and the corresponding earnings in Japanese yen. They

were instructed to remain seated until they were asked to come forward and receive cash

payments. Points were converted into Japanese yen at the rate of 1 point = 0.41 yen in the

High Alpha condition and 1 point = 0.18 yen in the Low Alpha condition. The average

individual earnings were 2642 yen in the High Alpha condition and 2368 yen in the Low

Alpha condition, including a 500 yen show-up bonus.7 Each session lasted approximately

80 min, including reading instructions and receiving payments.

4 Results

This section first assesses how well SMSE describes the observed behavior, and then com-

pares SMSE to QRE using two measures of goodness-of-fit.

4.1 Assessment of SMSE

Figure 3 exhibits the predicted and observed cumulative relative frequency distributions of

departure time choices by condition and blocks of 10 rounds. In each panel, there are six

gray lines and one thick black line representing the group-level distributions and predicted

distribution under SMSE, respectively. Common to both conditions was the observation

that the participants tended to depart later than predicted. In block 1 of the Low Alpha

7As of the first day of the experiment, the US dollar to Japanese yen exchange rate was $1=149 yen,

and the minimum wage was 1064 yen in Osaka Prefecture.
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Figure 3: Observed and predicted cumulative departure time distributions by condition

and blocks of 10 rounds
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condition (top-right panel), the observed distributions are far to the right of the predicted

distribution. This means that the participants in this condition left the origin much

later than was predicted. As they gained more experience with the game, the observed

distributions approached the predicted distribution; however, delayed departures persisted

throughout the sessions. A similar pattern of deviation from the predicted distribution

was observed for the High Alpha condition.

Table 4 reports the means of departure and travel times by condition, group, and blocks

of 10 rounds. Across both conditions, the mean departure times gradually approached the

SMSE predictions over successive blocks, yet persistently remain higher than the predicted

values throughout all four blocks. The mean travel times also generally fell below the

SMSE predictions, with the exception of the first block in the High Alpha condition. In

contrast, mean travel times in the Low Alpha condition consistently remained below the

SMSE predictions, although they tended to move closer to the predicted values over time.

As shown in Table 3, if participants exhibit bounded rationality, the mean departure

times are expected to exceed the SMSE predictions. To test this hypothesis, a one-sided

Wilcoxon signed-rank test was conducted, treating each group as an independent observa-

tion and using data from the final block, where the observed distributions of departure time

choice behavior were closest to the predicted distributions (Figure 3). The results revealed

statistically significant differences at the 5% level for both the High Alpha (p = 0.03125)

and Low Alpha (p = 0.01562) conditions, suggesting that, even after gaining experience,

later departures did not disappear.

Bounded rationality also suggests that the mean travel times are lower than the SMSE

predictions. The same test was applied to test the hypothesis that the observed mean

travel times in the final block are significantly lower than those in the SMSE predictions.

The results revealed a significant difference in the High Alpha condition (p = 0.01563),

while no significant difference was found in the Low Alpha condition (p = 0.2813). This

indicates consistency between the observed mean travel times and SMSE predictions in

the Low Alpha condition, but not in the High Alpha condition.

In summary, participants in both conditions displayed behavior indicative of bounded

rationality, persisting in the later rounds of the experiment, although the degree of consis-

tency with bounded rationality appears to vary between conditions. The following subsec-

tion assesses the comparative fit of the SMSE and QRE models using two goodness-of-fit

measures.

4.2 Comparison between SMSE and QRE

Unlike parameter-free Nash equilibrium, QRE includes a precision parameter λ, which

must be estimated from the experimental data. Following Camerer & Ho (1999), the first

12



Table 4: Means of departure and travel times by condition, group, and blocks of 10 rounds

Block

Condition Group 1 2 3 4 SMSE

High Alpha Departure Time All 7.047 6.605 6.532 6.748 6.122

1 7.5 6.17 7.03 6.84

2 6.99 6.91 6.39 6.64

3 6.55 6.75 7.02 7.2

4 6.59 6.79 7.05 6.9

5 7.43 6.3 5.79 6.86

6 7.22 6.71 5.91 6.05

Travel Time All 2.462 2.163 1.972 1.96 2.209

1 2.45 1.86 1.69 1.98

2 2.10 2.53 2.40 1.97

3 3.08 1.81 1.81 2.02

4 2.69 1.70 1.66 1.93

5 2.47 2.59 1.95 2.10

6 1.98 2.49 2.32 1.76

Low Alpha Departure Time All 6.987 5.877 5.158 5.132 4.721

1 7.01 6.09 5.43 5.2

2 6.57 5.81 5.1 5.28

3 6.78 6.04 5.33 5.11

4 6.37 5.04 4.96 4.75

5 7.55 6.12 5.08 5.52

6 7.64 6.16 5.05 4.93

Travel Time All 3.523 4.167 4.227 4.147 4.229

1 3.78 4.51 4.47 4.3

2 3.86 4.29 4.1 4.12

3 3.38 3.43 3.68 3.84

4 3.77 4.26 4.04 4.16

5 3.74 4.38 4.32 3.99

6 2.61 4.13 4.75 4.47

70% of the data were used for parameter estimation, whereas the remaining 30% were

used for out-of-sample validation. In this study, the precision parameter λ was estimated

separately for each group, based on data from the first 28 rounds, by maximizing the
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Table 5: Estimated precision parameter of QRE by condition and group

High Alpha Low Alpha

Group λ LL Group λ LL

1 0.042 -680.121 1 0.029 -485.287

2 0.042 -665.167 2 0.035 -520.367

3 0.103 -662.394 3 0.028 -537.093

4 0.112 -667.055 4 0.061 -491.819

5 0.028 -678.840 5 0.029 -534.971

6 0.034 -676.849 6 0.023 -598.009
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Figure 4: Observed and estimated QRE cumulative departure time distributions by group

for the High Alpha condition

following log-likelihood function:

LL(λ) =

18∑
t=0

n(t) ln pλ(t),

where n(t) is the departure frequency at t.

Table 5 reports the estimated λ values and corresponding log-likelihood values by con-

dition and group. The cumulative departure time choice distributions under the estimated
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Figure 5: Observed and estimated QRE cumulative departure time distributions by group

for the Low Alpha condition

QRE are displayed with the observed and SMSE distributions in Figures 4 (High Alpha)

and 5 (Low Alpha), respectively. In the High Alpha condition, it is unclear which model,

SMSE or QRE, better fits the data from the first 28 rounds, and in each group, the distri-

butions of these theoretical models were almost identical. Meanwhile, it was visually clear

that QRE outperformed SMSE in the Low Alpha condition: the observed distribution was

accounted well by the estimated QRE in each group.

Data from the last 12 rounds were used to perform an out-of-sample validation for each

group using two measures of goodness-of-fit. Let p(t) be the probability of departing at t

as specified by a theoretical model, either the SMSE or QRE model. The first measure is

the mean squared deviation (MSD), defined as

MSD =
1

120

10∑
i=1

18∑
t=0

40∑
r=29

(
di(t, r)− p(t)

)2
,

where

di(t, r) =

1 if participant i departs at t in round r

0 otherwise.
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Table 6: Comparison between models by condition, measure, and group

High Alpha Low Alpha

Measure Group SMSE QRE Measure Group SMSE QRE

MSD 1 0.90082 0.89784 MSD 1 1.3726 0.76869

2 0.90011 0.90127 2 1.2978 0.81103

3 0.89958 0.89683 3 1.4956 0.79328

4 0.90835 0.90743 4 0.95787 0.68375

5 0.16023 0.15743 5 1.2571 0.84344

6 0.20069 0.18951 6 1.1042 0.88512

ED 1 0.20341 0.19594 ED 1 0.88983 0.43342

2 0.14803 0.15192 2 0.87094 0.52128

3 0.20547 0.19867 3 0.9383 0.42207

4 0.1849 0.18237 4 0.58151 0.25303

5 0.16023 0.15743 5 0.83652 0.53486

6 0.20069 0.18951 6 0.72853 0.55825

The second goodness-of-fit measure is the Euclidian distance (ED), calculated as the sum

of the squared differences between the observed and predicted distributions of departure

time choices:

ED =
18∑
t=0

(
f(t)− p(t)

)2
,

where f(t) is the relative frequency of departures at time t during the last 12 rounds.

Both measures had a maximum of two, with lower values indicating a better fit of the

theoretical model to the data.

Table 6 compares the SMSE and QRE models by condition, measure, and group. The

model with shaded values demonstrates a superior fit. In the High Alpha condition, the

values of MSD and ED were very close to each other. Except group 2, these values were

slightly smaller for QRE than SMSE. In contrast, the Low Alpha condition shows a very

different picture; in all six groups, QRE had much smaller MSD and ED values than

SMSE. QRE provided a better fit across all six groups.

5 Conclusion

Since the pioneering work by Vickrey (1969), which provided a framework for the dynamic

analysis of rush-hour bottleneck congestion, his bottleneck model has been extended in a

variety of directions. Despite its important policy implications, the model’s ability to pre-

dict actual behavior has long remained unanswered. This study experimentally examined

the extent to which the aggregate behavior of decision makers is accounted for by two
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symmetric equilibrium models, SMSE and QRE, the former assuming full rationality and

the latter bounded rationality. The bottleneck model was tailored to its discrete version by

relaxing the assumptions of a continuum of commuters and a continuous strategy space.

The discrete model was then subjected to a controlled laboratory experiment in which

a group of 10 participants interacted repeatedly 40 times. The experiment consisted of

two conditions that differed from one another with respect to the shadow price of travel

time. The results showed a strong initial tendency of participants to delay their depar-

tures, which was in line with QRE predictions. However, this tendency diminished with

increased experience as participants’ behavior gradually approached SMSE predictions.

To evaluate the predictive performance of the QRE model relative to that of the SMSE

model, 70% of the data were used to estimate the precision parameter of the QRE model,

and the remaining 30% of the data were reserved for out-of-sample validation using two

goodness-of-fit measures, MSD and ED. The validation confirmed that QRE consistently

outperformed SMSE under both experimental conditions. QRE captures bounded-rational

commuter behavior, highlighting the limitations of equilibrium models based on fully ra-

tional decision-making assumptions.

Although this study focuses on the predictive power of two equilibrium models, SMSE

and QRE, for aggregate behavior, it may be instructive to discuss individual behavior. The

most striking finding is that given no feedback information about the behavior of others

at the end of each round, participants in the current experiment generated systematic and

replicable patterns of aggregate behavior that differed slightly from SMSE. They exhibited

a variety of departure time choice behaviors that defy a simple classification. For example,

Figure 6 plots the cumulative relative frequency distributions of the departure time choices

of the 10 participants in group 1 of the High Alpha condition, with the SMSE distribution

in the solid line. The figure was generated from the data pooled over 40 rounds. Some

participants (e.g., participants 1 and 9) departed earlier and some others (e.g., participants

6 and 7) departed later than the SMSE. Participant 4 repeatedly chose the same departure

time. The behavior of participants 2 and 5 differed only slightly from the SMSE, while

participant 3 behaved almost perfectly in accordance with the SMSE. The finding of highly

ordered patterns of aggregate behavior coupled with highly chaotic patterns of individual

behavior has also been reported in previous experimental studies, such as market entry

games (Sundali et al., 1995; Erev & Rapoport, 1998), route choice games (Selten et al.,

2007; Morgan et al., 2009; Rapoport et al., 2009), and queuing games (Rapoport et al.,

2004; Seale et al., 2005; Rapoport et al., 2010).

In conclusion, incorporating bounded rationality into Vickrey’s bottleneck models,

such as QRE, improves the ability to predict commuter behavior at the aggregate level.

This approach provides valuable insights for policymakers seeking to design interventions
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Figure 6: Cumulative observed relative frequency distributions of departure time choices

of the 10 participants in group 1 of the High Alpha condition

that account for actual behavioral patterns, which may include systematic deviations

from perfect rationality. Future research should further investigate bounded rationality

allowing for individual heterogeneity influencing commuter departure time decisions and

explore the application of QRE to more complex traffic networks to validate and extend

the model’s predictive capabilities in various urban contexts.
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