
ソシオネットワーク戦略ディスカッションペーパーシリーズ        ISSN 2434-9445          

第 102 号 2022 年 5 月 

RISS Discussion Paper Series 
No.102  May , 2022 

 

 

  

 
 
 

 
 
 

文部科学大臣認定 共同利用・共同研究拠点 

関西大学ソシオネットワーク戦略研究機構 

 

Research Institute for Socionetwork Strategies, 
Kansai University 

Joint Usage / Research Center, MEXT, Japan 

Suita, Osaka, 564-8680, Japan 

URL: https://www.kansai-u.ac.jp/riss/index.html 

e-mail: riss@ml.kandai.jp 

tel. 06-6368-1228 

fax. 06-6330-3304 

 
An Experimental Study of Crémer–McLean 
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Abstract

Full-surplus-extraction auctions designed by Crémer and McLean (1988)

have been criticized as unrealistic mechanisms. We assess the performance

of these auctions in a controlled experimental environment. The experiment

has two treatments: first-price and second-price auctions supplemented with

Crémer–McLean lotteries. In the experiment, subjects cannot opt out of

auctions. This rule allows us to focus on their bidding behavior. The ex-

perimental evidence clearly shows that neither auction works as predicted.

In each treatment, the seller’s actual revenue is significantly higher than

the equilibrium revenue. Panel data analysis shows that overbidding per-

sists throughout all rounds in the second-price treatment, while it slightly

diminishes through rounds in the first-price treatment.
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1 Introduction

Full-surplus-extraction auctions designed by Crémer and McLean (1988, hence-

forth CM) have been criticized as unrealistic mechanisms. CM auctions implement

an efficient outcome, without leaving any information rents for risk-neutral bid-

ders, by using a commonly known statistical dependence of their valuations for an

auctioned item. These mechanisms violate the “Wilson doctrine” (Wilson, 1987),

which suggests that trading rules should not rely excessively on common knowl-

edge. Börgers (2015, p. 124) argued that “one should view the Crémer–McLean

result as a paradox rather than a guidance to the construction of mechanisms that

could work in practice.”1 In fact, CM themselves concluded that “Economic intu-

ition and informal evidence (we know of no way to test such a proposition) suggest

that this result is counterfactual, and several explanations can be suggested.”

However, how do CM auctions work in controlled experimental environments?

An experimental approach allows us to address difficulties in testing theoretical

hypotheses concerning CM auctions. Most importantly, an experimenter can de-

sign a joint probability distribution of bidders’ valuations, and this common prior

can be common knowledge among subjects. If it turns out that CM auctions do

not work as predicted, then we can analyze experimental data to investigate the

underlying causes of this failure. If it is confirmed that CM auctions perform well

in these clean environments, then we can take the next step to test this perfor-

mance in more practical situations. The purpose of this experimental study is to

provide behavioral evidence to scrutinize whether CM auctions are impractical.

As in the framework of CM, subjects in our between-subject experiment play

either a Bayesian auction or a dominant strategy auction in a correlated-private-

values environment. Specifically, a pair of subjects plays either a first-price (1P) or

a second-price (2P) auction supplemented with “lotteries” (or “side-bets”). These

lottery prizes depend on an opponent’s bid, and hence, the interim expected value

of a bidder’s lottery can depend on his own valuation due to correlation. Using this

fact, we design lotteries such that truthful bidding is a Bayesian Nash equilibrium

in the 1P-CM auction and a dominant strategy in the 2P-CM auction, and the

seller extracts the full surplus on average in equilibrium. Indeed, the 1P-CM

auction with these lotteries is dominance solvable. Each pair repeatedly plays 40

auction rounds. Subjects have no opt-out option. In other words, our study focuses

on subjects’ bidding behavior in the continuation game after they participate as

in equilibrium.

1 See Milgrom (2004, p. 165) and Carroll (2019, p. 142) for similar arguments.
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Our experimental evidence clearly shows that neither CM auction works as

predicted. Notably, in each treatment, the seller’s actual average revenue is sig-

nificantly higher than the equilibrium average revenue. In the 2P-CM treatment,

this is true even in later rounds. The actual revenues in the 1P-CM and 2P-CM

treatments are on average 24% and 83% above the equilibrium revenues, respec-

tively. Of course, these results imply that subjects’ participation constraints are

violated, that is, the actual average surplus per bidder is significantly lower than

zero. Hence, if subjects had an opt-out option, then they would, at least some-

times, opt out of these unfavorable auctions.

These results are caused by subjects’ deviations from equilibrium. Their bid-

ding behavior is far from truthful bidding. Overall, overbidding (i.e., bidding

above valuations) is prevalent in both treatments. In the 1P-CM treatment, we

observe that overbidding slightly diminishes through rounds, possibly due to its

dominance solvability. To put it differently, it takes time for subjects to “learn” to

bid truthfully. In general, lotteries attached to the 1P auction can be quite compli-

cated. Therefore, how to design appropriate lotteries is a difficult problem for the

use of 1P-CM auctions. In the 2P-CM treatment, we find that overbidding persists

throughout all rounds. In order to ensure the strategy-proofness (i.e., truthful bid-

ding is a dominant strategy), this treatment adopts, for each bidder, a lottery that

depends only on his opponent bid. This lottery seems relatively simple. However,

this prize must be decreasing in the opponent’s bid due to a positive correlation

between valuations. Hence, if subjects have spite motives (Morgan et al., 2003),

then the 2P-CM auction induces more aggressive overbidding than a 2P auction

with no lottery does.

The remainder of the paper is organized as follows. The next subsection dis-

cusses related theoretical and experimental literature. Section 2 presents a sim-

plified version of the theoretical framework of CM. Section 3 describes the ex-

perimental design. Section 4 analyses the experimental data to test theoretical

hypotheses. Section 5 concludes. Appendix A contains supplementary data and

reports some regression analysis.

1.1 Related literature

There exists a considerable theoretical literature on full surplus extraction. By

extending an insightful example of Myerson (1981), Crémer and McLean (1985,

1988) designed full-surplus-extraction mechanisms in interdependent-values and

private-values environments with risk-neutral agents, respectively. Indeed, CM
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characterized, for each concept of Bayesian-Nash and dominant-strategy equilibria,

the common prior distributions that guarantee full surplus extraction given the

equilibrium concept. Their Bayesian implementation result was extended to a

general environment with continuum type spaces by McAfee and Reny (1992),

who indicated that paradoxical full-extraction results “cast doubt on the value of

the current mechanism design paradigm as a model of institutional design.”

In the framework of CM, under the common-knowledge assumption that each

bidder has a fixed finite number of types, priors that guarantee full surplus ex-

traction are generic (in the sense that the set of these priors has full Lebesgue

measure and is open). With different concepts of genericity, Heifetz and Neeman

(2006) and Chen and Xiong (2013a) proved nongenericity and genericity results

in infinite-dimensional spaces of priors (e.g., the collection of all priors on the

universal type space), respectively. Although these two studies reached opposite

conclusions, they shared the same motivation—the evaluation of the validity of

the mechanism design paradigm (McAfee and Reny, 1992). Our experiment is not

designed so as to empirically study genericity problems.2 Nevertheless, our exper-

imental evidence suggests that the optimality of CM auctions may be impaired by

bidders’ bounded rationality or behavioral motives.

Apart from nongenericity results, there are several theoretical explanations why

full-surplus-extraction auctions are not observed in practice. These include risk

aversion or limited liability of bidders (Robert, 1991), collusive agreements between

bidders (Laffont and Martimort, 2000), information acquisition by bidders about

others’ types (Bikhchandani, 2010), and non-robustness of full-extraction auctions

to bidders’ beliefs (Chung and Ely, 2007; Pham and Yamashita, 2021). We prevent

these potential confounds as much as possible by applying experimental methods.

Following the literature on optimal auction design, CM considered partial im-

plementation. Full implementation of the full-surplus-extraction outcome was

studied by Maskin and Riley (1980), Brusco (1998), Matsushima (2007), and Chen

and Xiong (2013b). Our experiment has no treatment for their fully-implementing

mechanisms, because they are more complicated than CM auctions (or experimen-

tally infeasible). Experiments on these mechanisms are left for future research.

There exists a large body of experimental literature on auctions, as surveyed by

Kagel and Levin (2015). In 1P-auction experiments, subjects tend to bid higher

than risk-neutral equilibrium bids, but lower than their valuations. This bidding

2 As suggested by CM, it may be impossible to test their generic implementation results
(Theorems 1 and 2 of CM) even experimentally. However, we can design an experiment to
examine how the degree or sign of value correlation changes subjects’ behavior in CM auctions.
See Section 5 for this possibility.

4



behavior has been ascribed to subjects’ risk aversion (Cox et al., 1982; Füllbrunn

et al., 2019; Rietz, 1993; Walker et al., 1990). Other explanations include bi-

ased probabilistic beliefs (Armantier and Treich, 2009) and regrets (Engelbrecht-

Wiggans and Katok, 2008; Filiz-Ozbay and Ozbay, 2007). In our 1P-CM treat-

ment, subjects’ bids are significantly higher than their valuations. This result is

in stark contrast with results in 1P-auction experiments.

In 2P-auction experiments, subjects tend to bid higher than their valuations.

This overbidding behavior has been observed in environments with affiliated pri-

vate values (Breitmoser and Schweighofer-Kodritsch, 2022a; Garratt et al., 2012;

Harstad, 2000; Kagel et al., 1987; Li, 2017) and with independent private values

(Andreoni et al., 2007; Bartling and Netzer, 2016; Cooper and Fang, 2008; Kagel

and Levin, 1993; Schneider and Porter, 2020; Tan, 2020). For this overbidding be-

havior, several explanations have been proposed: spite (Morgan et al., 2003), joy

of winning (Cooper and Fang, 2008), and cognitive limitation (Li, 2017). These

three factors can also cause overbidding in 2P-CM auctions. In particular, as al-

ready mentioned, subjects’ spite motives might cause more aggressive overbidding

in the 2P-CM treatment.

To the best of my knowledge, there has been no previous experimental study

that tests the performance of CM auctions. However, a related mechanism-design

problem was experimentally studied by Krajbich et al. (2009) and Krajbich et al.

(2017). For public-goods problems, they tested the performance of “neurometri-

cally informed mechanisms.” In this novel mechanism, each agent’s tax payment

depends on an ex-post signal correlated with his payoff type, as in Riordan and

Sappington (1988). These non-manipulable signals are interpreted as noisy neu-

ral measures of subjects’ preferences provided by neurometric technologies.3 If

this signal technology satisfies a generic CM condition, then we can solve the

free-rider problem by using CM lotteries. Indeed, their neurometrically informed

mechanisms, which are efficient, strategy-proof, and interim individually rational,

performed surprisingly well in experiments. In contrast with their mechanisms,

a subject’s lottery prize in CM auctions depends on his/her opponent’s bid, not

on his/her own neural signal. This additional strategic interaction between sub-

jects, together with their bounded rationality and behavioral motives, might cause

non-truthful bidding behavior in our experiment.

3 In their experiments, Krajbich et al. (2009) actually used functional magnetic resonance
imaging (fMRI) to obtain signals of subjects’ induced values, while Krajbich et al. (2017) used
computers to simulate noisy signals as if they were generated by a neurometric technology.
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2 Theoretical framework

We consider a special case of the general model of CM. In particular, we employ

two auction mechanisms designed by them, focussing on an environment with two

ex-ante symmetric bidders.

2.1 Auction environment

An indivisible item is auctioned off by a seller who attaches no value to it.

There are two risk-neutral bidders (i ∈ {1, 2}) whose reservation payoffs are zero.

Each bidder i’s valuation (i.e., willingness to pay) for the item is given by a random

variable vi. The set of possible valuations V ⊂ R+ is finite, and common to the two

bidders. We denote by π a common prior distribution on the set V 2 of valuations.

The joint distribution π is symmetric. Each bidder privately knows his realized

valuation, but the prior π is common knowledge among the three parties.

For each valuation vi of bidder i, we denote by π(vj | vi) ≡ π(vi, vj)/
∑

v′j
π(vi, v

′
j)

the interim belief about the other’s valuation vj, j 6= i. Let Γ denote the square

matrix of size |V | whose row vectors are {π(· | vi) | vi ∈ V }. As a statistical

dependence, we assume that the matrix Γ has full rank. Note that if the bidders’

valuations were statistically independent, the matrix Γ would have rank 1.

2.2 Second-price Crémer–McLean auction

First, let us consider a standard 2P auction. A pair of sealed bids is denoted

by b = (b1, b2) ∈ V 2. Each bidder i wins the auction if bi > bj, and loses if bi < bj.

If there is a tie (i.e., bi = bj), a winner is randomly selected with equal probability.

A winner i gets the item and pays the other’s bid bj to the seller. A loser obtains

nothing. In this auction, truthful bidding (i.e., bi = vi) is a (weakly) dominant

strategy for each bidder i. Hence, the interim expected surplus for each bidder

with valuation vi is given by

h(vi) ≡
∑
vj<vi

π(vj | vi) (vi − vj) . (1)

We attach a symmetric lottery l : V → R for each bidder to the 2P auction.

We call this augmented auction a 2P-CM auction. In this auction, after a winner

is decided as above, each bidder i gets a lottery prize l(bj) from the seller. This

(positive or negative) prize amount depends only on the other’s bid bj. We define
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this lottery l as

l ≡ −Γ−1h, (2)

where the surplus function h is identified with the |V |-dimensional column vector.

Note that the square matrix Γ is invertible because it has full rank. In this auction,

each bidder’s ex-post payoff is given as follows:

ui =

vi − bj + l(bj) if bidder i wins,

l(bj) if bidder i loses.
(3)

We observe that the 2P-CM auction is also strategy-proof, and hence, a bidder

with the highest valuation wins the item. Further, the definition (2) of the lottery

l immediately implies that, for each valuation vi,

h(vi) +
∑
vj

π(vj | vi)l(vj) = 0. (4)

In other words, the interim expected surplus for each bidder is always zero (i.e., no

bidder obtains any information rent), provided that both bidders adopt truthful

bidding. Thus, the 2P-CM auction (partially) implements the outcome of full

surplus extraction.4

2.3 First-price Crémer–McLean auction

Next, let us consider a standard 1P auction. A winner is decided in the same

way as the 2P auction, but the payment rule is different. That is, a winner pays his

own bid to the seller. The 1P auction is not strategy-proof, because each bidder

has an incentive for bid shading to reduce his payment.

We attach a symmetric lottery function l : V 2 → R for each bidder to the 1P

auction. We call this augmented auction a 1P-CM auction. In this auction, after

a winner is decided, each bidder i gets a lottery prize l(bi, bj) from the seller. This

(positive or negative) prize amount depends on both bids. We define this function

l as follows: Since the matrix Γ has full rank, no vector π(· | vi) can be a convex

combination of the other |V | − 1 vectors {π(· | v′i) | v′i 6= vi}. Then, using the

4 This auction game also has Bayesian Nash equilibria with dominated strategies (e.g., one
bidder always bids the amount maxV , and the other always bids the amount minV ).
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separating hyperplane theorem, we can find a function g : V 2 → R such that∑
vj

π(vj | vi)g(vi, vj) = 0, (5)

∑
vj

π(vj | v′i)g(vi, vj) < 0 (6)

for each vi, v
′
i ∈ V with vi 6= v′i. Given this function with a positive number γ > 0,

the lottery function is defined by l ≡ γg. That is, l is a proper scoring rule such

that each bidder breaks even (Krajbich et al., 2017). In this auction, each bidder’s

ex-post payoff is given as follows:

ui =

vi − bi + l(bi, bj) if bidder i wins,

l(bi, bj) if bidder i loses.
(7)

Using inequalities (6), we can choose γ so large that the expected value of the

lottery l(vi, ·) for bidder i with valuation v′i 6= vi is sufficiently negative, and hence,

truthful bidding constitutes a Bayesian Nash equilibrium. Further, equation (5)

implies that, for each valuation vi,∑
vj<vi

π(vj | vi)(vi − vi) +
∑
vj

π(vj | vi)l(vi, vj) = γ
∑
vj

π(vj | vi)g(vi, vj) = 0. (8)

In other words, the interim expected surplus for each bidder is always zero, pro-

vided that both bidders adopt truthful bidding. Thus, the 1P-CM auction (par-

tially) implements the outcome of full surplus extraction.

2.4 Specification

In the experiment, parameter values are specified as follows: The set of possible

valuations is given by V = {0, 10, 20, 30, 40}. The set of possible bids is the same

as the valuation set V . This means that CM auctions are considered as direct

mechanisms. The common prior is specified as

π(vi, vj) =

8/100 if vi = vj,

3/100 if vi 6= vj.
(9)

It is easy to check that the vectors {π(· | vi) | vi ∈ V } are linearly independent,

that is, the matrix Γ has full rank. Moreover, this specification implies that the

8



bidders’ valuations are positively correlated.

In 2P-CM, the symmetric lottery l is uniquely determined by (2) given the

common prior π. Due to the positive correlation, the lottery prize is decreasing in

the other’s bid, as shown in Table 1.

bj

l(bj)

0 10 20 30 40

+18 +12 0 −18 −42

Table 1: Lottery prizes l(bj) in 2P-CM

In contrast to 2P-CM, 1P-CM allows some freedom to design lotteries. Indeed,

there are infinitely many lotteries that satisfy equation (5) and inequalities (6).

In the experiment, the lottery function l is specified as in Table 2. The reason

for this specification is that the 1P-CM auction with these lotteries is dominance

solvable. More specifically, in this Bayesian game, truthful bidding is the unique

strategy that survives the interim iterative deletion of strictly dominated strategies

(Fudenberg and Tirole, 1991). Some tedious calculations show that the order of

deletion is given by Table 3. For example, if bidder i’s valuation is vi = 0, then

both bi = 30 and bi = 40 are deleted at first, and bi = 20 is deleted after some

strategies are deleted at first. As a result, truthful bidding is the unique Bayesian

Nash equilibrium strategy in this auction game.

bi
bj 0 10 20 30 40

0

10

20

30

40

+12 +8 −3 −13 −24

+18 +9 −2 −13 −27

+26 +18 +3 −13 −39

+32 +27 +12 −12 −39

+41 +37 +22 −4 −36

Table 2: Lottery prizes l(bi, bj) in 1P-CM

In each CM auction, if both bidders always bid truthfully as in equilibrium,

then the seller’s ex-ante revenue is equal to the expected full surplus. Simple

computations show that the expected value of the full surplus is 26.
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vi
bi 0 10 20 30 40

0

10

20

30

40

3rd 2nd 1st 1st

5th 3rd 1st 1st

3rd 6th 2nd 1st

3rd 6th 7th 4th

3rd 6th 7th 8th

Table 3: Order of deletion of strictly dominated strategies in 1P-CM

3 Experimental design

3.1 Procedure

This is a between-subjects experiment with two treatments, 1P-CM and 2P-CM.

Each subject participates in only one treatment, playing the role as a bidder.

We adopt the partner matching (Tan, 2020) as a matching rule. In each treat-

ment session, two subjects are randomly matched at first, and each pair plays 40

rounds of the auction in this treatment. Under this matching rule, each pair can

be regarded as the unit of independent observation in a statistical analysis.

The experiment is programmed in oTree (Chen et al., 2016). In each round,

each subject sees his/her realized valuation in 10 seconds, and then, submits

his/her bid in 40 seconds.5 At the end of this round, each subject sees the auction

result: who wins, the two subjects’ valuations and bids, his/her auction payoff

and lottery prize amount,6 and his/her total payoff in this round. Subjects can

also recheck results in previous rounds.

Since the 2P-CM auction is strategy-proof, truthful bidding is a dominant

strategy even for non-risk-neutral bidders. However, the equilibrium prediction in

1P-CM may depend on bidders’ risk preferences. To induce risk-neutral prefer-

ences, the following binary lottery procedure (Roth and Malouf, 1979) is adopted

as a payment scheme.7 The unit of payoff in the experiment is called point. After

a subject finishes all rounds, one round is randomly chosen as a payment round.

Also, a number is randomly drawn from the set of integers from −100 to 100. If

5 On a bidding page, subjects can push a submit button only after 20 seconds pass.
6 To avoid framing effects, this prize was called “an increase or decrease in payoff which is

irrelevant to whether you win the auction.”
7 There is mixed evidence on the performance of this procedure in experiments on 1P auc-

tions. For example, Walker et al. (1990) provided negative evidence, while Rietz (1993) provided
positive evidence. Basically, our design follows suggestions made by Rietz (1993).
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his/her total payoff in the payment round is greater than the random number,

then this subject receives a high reward of 4,000 JPY. Otherwise, he/she receives

a low reward of 2,000 JPY. Each reward includes a show-up fee of 1,000 JPY.

3.2 Administrative details

The experiment was conducted online in May 2021.8 In total, 150 subjects were

recruited from the subject pool of the Experimental Economics Laboratory, RISS,

Kansai University through the ORSEE system (Greiner, 2015). All subjects except

one were undergraduate students at Kansai University.9 Table 4 summarizes the

numbers of sessions, subjects, and pairs in each treatment. Table A.1 in Appendix

A also shows the numbers of subjects by year of admission. A chi-squared test

cannot reject the null hypothesis that years and treatments are independent (p =

0.331). This balance-test result justifies the estimation and test of treatment

effects in Section 4.

Treatment # of sessions # of subjects # of pairs

1P-CM 6 80 40

2P-CM 6 70 35

Table 4: Sessions, subjects, and pairs in each treatment

Each session proceeded as follows: First, subjects joined an online meeting

(Zoom Video Communications, Inc.) to watch an instruction video that explains

experimental rules. During the experiment, subjects could not see each other and

their anonymity was maintained. Any communication between subjects was pro-

hibited. Second, subjects played 40 auction rounds on an experiment website.10

Although there was no quiz question about auction rules, subjects could ask ques-

tions on an introductory page and check the experimental rules in every round.

In particular, bidding pages had a table displaying how a subject’s own lottery

prize depends on the other’s bid. Finally, every subject who finished all rounds

identified him/herself by showing his/her student card to the experimenter. The

session ended with a questionnaire. Since the experiment was conducted online,

rewards were paid into subjects’ bank accounts after the session.

Each session lasted approximately 70 minutes on average. The average pay-

ment per subject was around 2,800 JPY (25.7 USD at the time of the experiment).

8 It was not conducted in a laboratory, because of the COVID-19 pandemic.
9 One graduate student at the university was recruited by mistake.

10 Before these rounds, subjects played 2 dryrun rounds without monetary incentives.
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4 Experimental results

In this section, we analyse the experimental data to test whether various mea-

sures are consistent with equilibrium predictions. In Subsections 4.1–4.3, we use

average data for each pair of subjects as the unit of observation. In Subsection 4.4,

we use data for each subject in each round as the unit of observation to conduct

a panel data analysis.

4.1 Revenue

Figure 1 summarizes actual and equilibrium revenues in each treatment. In

the experiment, the seller obtains 31.95 and 46.21 points on average in 1P-CM

and 2P-CM, respectively. Given the realized valuations in the experiment, the

seller’s ex-ante revenues in equilibrium are calculated at 25.73 and 25.15 points

on average in 1P-CM and 2P-CM, respectively. Note that the equilibrium average

revenues from bidder pairs may be different from each other, depending on realized

valuations. Figure 2 also displays histograms of average revenues from bidder pairs.
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Figure 1: Actual and equilibrium average revenues in each treatment

We test whether these differences between actual and equilibrium average rev-

enues are statistically significant. For each treatment, a Wilcoxon matched-pairs

signed-rank test rejects the null hypothesis that both the actual and the equi-
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Figure 2: Frequencies of average revenues from bidder pairs in each treatment
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librium revenues come from the same distribution, at the 5% significance level

(p = 0.0326 in 1P-CM and p = 0.0001 in 2P-CM, two-sided).

Result 1. In each treatment, the seller’s actual revenue is significantly higher

than the equilibrium revenue. On average, the actual revenues in 1P-CM and

2P-CM are around 24% and 83% above the equilibrium revenues, respectively.

Figure 3 shows how the deviation of actual average revenues from equilibrium

average revenues changes over time in each treatment. As can be seen in the

figure, the deviation in 2P-CM remains positive in all rounds, while the deviation

in 1P-CM seems to converge to zero. Then, we focus on the last ten rounds in each

treatment. For 2P-CM, the Wilcoxon matched-pairs signed-rank test rejects the

null hypothesis that both the actual and the equilibrium revenues come from the

same distribution, at the 1% significance level (p = 0.0016, two-sided). However,

for 1P-CM, the same test cannot reject the null hypothesis at any conventional

level (p = 0.4638, two-sided).
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Figure 3: Time series of average revenue deviations in each treatment

Result 2. In the last ten rounds of 1P-CM, the seller’s actual revenue is not

significantly different from the equilibrium revenue. Even in the last ten rounds

of 2P-CM, the actual revenue is significantly higher than the equilibrium revenue.

We now turn to testing for a treatment effect on revenues. As shown in Figure

1, the seller’s actual average revenue is 14.26 points higher in 2P-CM than in
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1P-CM. A two-sample t-test with unequal variances shows that this treatment

effect is significantly different from zero at the 1% level (p = 0.0071, two-sided).

Also, a two-sample Wilcoxon rank-sum test shows that this effect is significant at

the same level (p = 0.0055, two-sided).

Result 3. The seller’s actual revenue is significantly higher in 2P-CM than in

1P-CM. The actual average revenue in 2P-CM is around 44% above that in 1P-CM.

4.2 Bidder’s surplus

Figure 4 summarizes actual and equilibrium surpluses for each bidder in each

treatment. In the experiment, each bidder obtains −4.36 and −11.69 points on

average in 1P-CM and 2P-CM, respectively. Given the realized valuations in the

experiment, the ex-post surpluses per bidder in equilibrium are calculated at 0.15

and 0.44 points on average in 1P-CM and 2P-CM, respectively.
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Figure 4: Actual and equilibrium average surpluses in each treatment

For each treatment, the Wilcoxon matched-pairs signed-rank test rejects the

null hypothesis that both the actual and the equilibrium average surpluses come

from the same distribution, at the 1% level (p = 0.0020 in 1P-CM and p = 0.0000

in 2P-CM, two-sided).

Result 4. In each treatment, the actual surplus per bidder is significantly lower

than the equilibrium surplus.
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The two-sample t-test with unequal variances rejects the null hypothesis that

the mean of the actual average surplus per bidder is equal between the two treat-

ments, at the 1% level (p = 0.0056, two-sided). Also, the two-sample Wilcoxon

rank-sum test shows that this treatment effect is significant at the same level

(p = 0.0044, two-sided).

Result 5. The actual surplus per bidder is significantly lower in 2P-CM than in

1P-CM.

4.3 Total surplus

From Subsections 4.1 and 4.2, we observe that, in the experiment, the 1P-CM

and 2P-CM auctions produce total surpluses of 23.23 and 22.83 points on aver-

age, respectively. These actual average total surpluses are 3 points lower than

the average full surplus (around 26 points). The two-sample t-test with unequal

variances cannot reject the null hypothesis that the mean of the average total sur-

plus is equal between the two treatments, at any conventional level (p = 0.4773,

two-sided).

Result 6. The actual total surpluses in 1P-CM and 2P-CM are not significantly

different from each other. On average, these total surpluses amount to around

90% of the full surplus.

4.4 Bidding behavior

Finally, we conduct a panel data analysis of bidding behavior. This analy-

sis helps us to find more fundamental causes for results in Subsections 4.1–4.3.

Following the literature on auction experiments, we introduce two variables to

measure how far subjects’ bidding behavior is from truthful bidding. We define

an overbid amount as a bid minus a valuation, and an absolute bid deviation as

the absolute value of this overbid amount.

Figures 5 and 6 show how overbid amounts and absolute bid deviations change

over time in each treatment, respectively. As shown in Figure 5, the average

overbid amounts remain positive through all rounds of 2P-CM, but these amounts

approach zero from above in later rounds of 1P-CM. Figure 6 shows that, in

1P-CM, the average absolute bid deviation is slightly decreasing over rounds.

However, these deviations stay high in later rounds of each treatment. This implies

that, in both treatments, there are many subjects who do not bid truthfully even

with some learning and experience. In the last round of 1P-CM (2P-CM), 27.5%

16



(52.8%) of subjects overbid, 32.2% (17.1%) of subjects underbid, and the other

subjects bid truthfully.
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Figure 5: Time series of average overbid amounts in each treatment

These visual patterns are confirmed by multi-level mixed-effects regressions

(Moffatt, 2015) reported in Table 5. The dependent variables are an overbid

amount and an absolute bid deviation for each subject in each round. Each re-

gression model has pair- and subject-level random effects. Regression results (1)

and (3) show that the average overbid amount in 1P-CM (2P-CM) is 1.83 (4.86)

points, and the average absolute bid deviation in 1P-CM (2P-CM) is 9.85 (11.10)

points. For the overbid amount, these treatment coefficients are significantly dif-

ferent from zero at the 5% level (p = 0.018 in 1P-CM and p = 0.000 in 2P-CM,

two-sided).

Result 7. In each treatment, the overbid amount is significantly higher than zero.

On average, these overbid amounts in 1P-CM and 2P-CM account for 9% and 24%

of realized valuations (around 20 points), respectively.

An F-test cannot reject the null hypothesis that the absolute bid deviations in

both treatments are equal, at the 5% level (p = 0.0918, two-sided). However, the

F-test rejects the null hypothesis that the overbid amounts in both treatments are

equal, at the 5% level (p = 0.0170, two-sided).

Result 8. The overbid amount is significantly higher in 2P-CM than in 1P-CM.

On average, the amount in 2P-CM is 2.6 times that in 1P-CM
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Figure 6: Time series of average absolute bid deviations in each treatment

Moreover, regression results (2) and (4) show that, in 1P-CM, the overbid

amount and the absolute bid deviation decrease by 0.07 and 0.05 points per round

(p < 0.05 and p < 0.01), respectively. In this treatment, some pairs of subjects

might slowly learn to bid truthfully because the 1P-CM auction is dominance

solvable as shown in Table 3.

Result 9. In 1P-CM, both the overbid amount and the absolute bid deviation

are decreasing over rounds significantly. In 2P-CM, neither variable exhibits such

a significant time trend.
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Dependent variable bid− value |bid− value|
(1) (2) (3) (4)

1P-CM 1.83∗∗∗ 3.28∗∗∗ 9.85∗∗∗ 10.88∗∗∗

(0.77) (0.91) (0.53) (0.52)

2P-CM 4.86∗∗∗ 5.61∗∗∗ 11.10∗∗∗ 11.72∗∗∗

(1.00) (1.16) (0.51) (0.76)

(round number −1) × 1P-CM −0.07∗∗ −0.05∗∗∗

(0.03) (0.01)

(round number −1) × 2P-CM −0.03 −0.03

(0.05) (0.03)

S.D. of the pair random effect 4.49 4.49 2.41 2.41

S.D. of the subject random effect 3.62 3.63 2.51 2.51

S.D. of the residual 13.31 13.29 10.09 10.08

Observations 6000 6000 6000 6000

Note: This table reports the results of multi-level mixed-effects regressions with pair

and subject random effects. The models have no constant term. Standard errors with

clustering at the pair level are shown in parentheses. ∗,∗∗ , and ∗∗∗ denote significance at

10%, 5% and 1%, respectively. S.D. means a standard deviation.

Table 5: Multi-level mixed-effects regressions for overbid amounts and ab-
solute bid deviations

As shown by regression models (1) and (2) for overbid amounts, the between-

pair standard deviations are larger than the between-subject standard deviations.

Hence, the variation across pairs is substantial in magnitude. Indeed, Figure 7

shows that, in each treatment, the average overbid amount of each subject is

positively correlated with the amount of the other subject in the same pair. This

positive correlation may be partly due to “repeated-game effects” under the rule

of partner matching. On the one hand, some pairs succeed in tacit collusion.11

On the other hand, some pairs seem to engage in negative reciprocal behavior.

To examine repeated-game behavior in each pair, it is useful to see Figures A.1

and A.2 in Appendix A. These figures show how pair-averaged overbid amounts

change over time. Then, we run a linear regression with pair-averaged overbid

amounts being the dependent variable and round numbers being the independent

11 For example, in 2P-CM, there was a pair of subjects who always submitted the lowest bid
(i.e., zero) from rounds 18 to 40. This pair corresponds to the leftmost point in the 2P-CM
diagram of Figure 7. In a post-session questionnaire, a subject in this pair indicated that he
made the zero bid in round 16 or 17 in order to establish cooperation with his opponent. Also,
the latter subject answered that he tried to go along with his opponent.
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variable. Using t-tests, we can show that linear time trends are downward for 8

pairs (pairs 12, 22, 31, 42, 61, 67, 69, and 72), and upward for 7 pairs (pairs 9, 36,

44, 46, 48, 66, and 73), at the 1% significance level.
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Figure 7: Average overbid amounts of two subjects in each pair

In standard 1P-auction experiments, subjects tend to bid higher than risk-

neutral equilibrium bids, but lower than their valuations to obtain positive rents.

However, in 1P-CM, subjects’ bids are significantly higher than their valuations.

This clearly shows that subjects respond to the presence of CM lotteries to some

extent.

Overbidding in standard 2P-auction experiments is a well-ducumented phe-

nomenon. Table 6 summarizes subjects’ bidding behavior in previous 2P-auction

experiments and the 2P-CM experiment.12 In 2P-CM, 46.2% of subjects over-

bid, 18.9% of subjects underbid, and the other subjects bid truthfully. However,

this frequency of overbidding is not so high compared to the frequencies in the

other experiments. To test whether subjects overbid more frequently (or more

aggressively) in a 2P-CM auction than in a 2P auction with no lottery, we should

run a randomized controlled experiment with these two auction treatments. This

question is left for future work.

12 Overbidding is less frequent than underbidding only in Garratt et al. (2012). In their
experiment, subjects were experienced participants in eBay auctions. Their evidence shows that
bidders with experience as eBay sellers tend to underbid more frequently than those without
this experience.
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Study Matching # of # of Frequency (%)

rule bidders rounds Truthful Underbid Overbid

KL (1993) Stranger 5 23, 24 27.0 5.7 67.2

KL (1993) Partner 10 12 32.5 9.6 57.9

ACK (2007) Stranger 4 30 77.3 8.8 14.5

CF (2008) Stranger 2 20 44.0 16.0 40.0

GWW (2012) Stranger 5 2 21.2 41.3 37.5

BN (2016) Stranger 2 24 46.1 14.0 39.8

Li (2017) Partner 4 10 17.8 40.6 41.6

Tan (2020) Stranger 2 15 30.0 18.8 51.2

Tan (2020) Partner 2 15 26.1 30.1 43.9

BSK (2022b) Partner 4 10 42.5 27.6 29.9

This study Partner 2 40 34.9 18.9 46.2

Note: The frequency data comes from Table 2 of Kagel and Levin (1993, KL), Table 5 of

Andreoni et al. (2007, ACK), page 1582 of Cooper and Fang (2008, CF), Table 1 of Garratt

et al. (2012, GWW), raw experimental data of Bartling and Netzer (2016, BN) and Li (2017),

Table 5 of Breitmoser and Schweighofer-Kodritsch (2022b, BSK), and Fig. 2 of Tan (2020).

Table 6: Bidding behavior in 2P-auction experiments and the 2P-CM experi-
ment

5 Conclusion

This study is only a first step toward assessing the performance of CM auc-

tions in experimental environments. There are many possible extensions. Perhaps

most importantly, we should examine the performance in a setting where subjects

can opt out of auctions. If subjects are risk-averse, then they may require some

risk premia to participate in CM auctions. It is interesting to know how much a

designer should pay risk premia to encourage their full participation. Even if sub-

jects have (innate or induced) risk-neutral preferences, they may not participate

in CM auctions. On this point, Milgrom (2004, p. 166) cautioned as follows:

More generally, in real auctions, bidders frequently refuse to participate if

the proposed mechanism seems strange or unfair. Many might apply these

adjectives to a mechanism that links bids to side bets. Precedent and famil-

iarity often limit the set of practically feasible designs.

Next, it is important to examine how subjects’ behavior is affected by the degree

or sign of value correlation. When a common prior is close to an independent
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distribution, CM lotteries become extremely risky. Further, in 2P-CM auctions,

a bidder’s lottery prize can be increasing in his opponent’s bid if their valuations

are negatively correlated. In this case, subjects with spite motives have incentives

to decrease their bids. These questions are left for future research.

Appendix A

Treatment # of subjects by year

2018 2019 2020 2021

1P-CM 25 19 27 9

2P-CM 15 21 21 13

Table A.1: Subjects by year of admission
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Figure A.1: Time series of average overbid amounts for each pair in 1P-CM
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Figure A.2: Time series of average overbid amounts for each pair in 2P-CM
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Figure A.3: Frequencies of bids conditional on valuations and rounds in 1P-CM
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Figure A.4: Frequencies of bids conditional on valuations and rounds in 2P-CM
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Dependent variable bid− value

Rounds 1–10 11–20 21–30 31–40

value = 0 15.24∗∗∗ 11.11∗∗∗ 10.19∗∗∗ 9.68∗∗∗

(1.48) (1.28) (1.46) (1.67)

value = 10 8.16∗∗∗ 7.41∗∗∗ 4.99∗∗∗ 5.38∗∗∗

(1.08) (1.22) (1.13) (1.74)

value = 20 2.88∗∗ 2.25∗∗ 1.64 2.16

(1.30) (1.13) (1.19) (1.34)

value = 30 −3.10∗∗∗ −2.06∗ −1.36 −3.86∗∗∗

(1.19) (1.21) (0.91) (1.52)

value = 40 −7.85∗∗∗ −9.49∗∗∗ −8.18∗∗∗ −8.11∗∗∗

(1.22) (1.16) (1.07) (1.28)

S.D. of the pair random effect 3.72 3.47 3.72 5.83

S.D. of the subject random effect 3.77 2.99 3.92 3.85

S.D. of the residual 11.57 11.21 10.32 10.35

Observations 2800 2800 2800 2800

Note: This table reports the results of multi-level mixed-effects regressions with pair and

subject random effects. The models have no constant term. Standard errors with clustering

at the pair level are shown in parentheses. ∗,∗∗ , and ∗∗∗ denote significance at 10%, 5% and

1%, respectively. S.D. means a standard deviation.

Table A.2: Multi-level mixed-effects regressions for overbid amounts in 1P-CM
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Dependent variable bid− value

Rounds 1–10 11–20 21–30 31–40

value = 0 15.59∗∗∗ 15.72∗∗∗ 13.80∗∗∗ 14.50∗∗∗

(1.71) (1.83) (1.87) (1.92)

value = 10 11.25∗∗∗ 10.96∗∗∗ 10.05∗∗∗ 9.35∗∗∗

(1.29) (1.57) (1.77) (1.82)

value = 20 5.83∗∗∗ 5.78∗∗∗ 4.48∗∗∗ 5.79∗∗∗

(1.31) (1.58) (1.56) (1.63)

value = 30 −0.00 0.30 −0.95 −0.41

(1.35) (1.36) (1.68) (1.84)

value = 40 −7.30∗∗∗ −5.59∗∗∗ −7.93∗∗∗ −5.46∗∗∗

(1.39) (1.49) (1.48) (1.53)

S.D. of the pair random effect 4.31 5.92 6.53 7.77

S.D. of the subject random effect 4.45 3.50 4.95 3.82

S.D. of the residual 10.96 10.76 9.76 9.59

Observations 3200 3200 3200 3200

Note: This table reports the results of multi-level mixed-effects regressions with pair and

subject random effects. The models have no constant term. Standard errors with clustering

at the pair level are shown in parentheses. ∗,∗∗ , and ∗∗∗ denote significance at 10%, 5% and

1%, respectively. S.D. means a standard deviation.

Table A.3: Multi-level mixed-effects regressions for overbid amounts in 2P-CM
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