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Abstract 

 
In this paper, some behavioral (or descriptive) models of individual decision making 
under risk and/or uncertainty are discussed. Firstly, a model to explain the violations 
of expected utility hypothesis is described. In this model outcome-dependent, 
non-additive probabilities are introduced in a measurable value function under risk 
where probability of each event occurring is known. The effective application of this 
approach to the public sector is shown in modeling risks of extreme events with low 
probability and high outcome. Next, a measurable value function under uncertainty is 
also described where basic probability of a set of event is known but occurrence 
probability of each event is not known. Potential applicability to evaluating a global 
warming problem is mentioned. As a special case of the measurable value function 
under uncertainty an extended Kahneman-Tversky model of prospect theory under 
uncertainty (PTU) is described. An application of PTU in evaluating the sense of 
security provided by nursing care robots is described.  
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1. INTRODUCTION 
 

A normative (prescriptive) model of decision making prescribes optimal behavior of how decisions 
should be made. On the other hand, a descriptive model is concerned with understanding how people 
actually behave when making decisions. 

The expected utility model has been widely used as a normative model of decision analysis under risk 
for modeling individual decision making. However, various paradoxes (Allais and Hagen, 1979; Ellsberg, 
1961) have been reported for the expected utility model, and it is argued that the expected utility model is 
not an adequate behavioral (descriptive) model. As a model to explain the violations of the expected utility 
hypothesis for individual decision making, outcome-dependent, non-additive probabilities are 
introduced in a measurable value function under risk where the probability of each event occurring is 
postulated to be known. The effective application of this approach to the public sector is mentioned in 
modeling risks of extreme events with low probability and high outcome.  

A measurable value function under uncertainty is also described where the basic probability of a 
set of event is known but the probability of each event occurring is not known. It is shown that the 
Ellsberg (1961) paradox is consistently resolved by using this model. This is a paradox in decision 
theory and experimental economics in which people's choices violate the expected utility hypothesis 
because of their tendency for ambiguity aversion. Potential applicability to evaluating a global 
warming problem is mentioned.  

As a special case of a measurable value function under uncertainty, prospect theory under 
uncertainty (PTU) is described as an extended Kahneman and Tversky (1979) model of prospect theory. 
An application of PTU to evaluating the sense of security provided by nursing care robots is 
described. 
 

 
2. EXPECTED UTILITY MODEL 
 

Utility functions could provide a means of modeling value judgment of a decision maker 
quantitatively. The scientific approach for value judgment has been discussed rigorously in the area of 
economics. People get a feeling of psychological satisfaction by consuming economic goods, by receiving 
service and so forth. This degree of satisfaction obtained is called “utility.” This concept plays a 
fundamental role in the theory of consumers’ behavior. 

Let 1x  and 2x  be the amount of goods A and B consumed, respectively, ( )21, xxu  be the 
corresponding value of the consumer’s utility function, 1p  and 2p  be the price of a unit amount of 
goods A and B, respectively, and b  be the budget. Then, the consumer may want to 

maximize ( )21, xxu                                    (1) 

subject to .2211 bxpxp ≤+                (2) 

That is, the consumer behavior has been explained in such a way that they would act to maximize their own 
utility, Eq. (1), subject to the budget constraint, Eq. (2). 

In order to derive the equilibrium condition of a consumer’s behavior, an ordinal utility function would 
be enough to evaluate it, but, for obtaining a preferred solution for a multiple criteria decision-making 
problem, we need a cardinal utility function. Furthermore, since, in a decision making problem under risk, 
the outcome would be obtained under some probability distribution, we need to evaluate the so-called 
expected utility (Hammond, 1998). For this we need to provide a cardinal utility function. Von Neumann 
and Morgenstern (1947) first developed axioms such that the expected utility hypotheses for the decision 
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making problem under risk are meaningful. 
Let X  be a set of outcomes, Re: →Xu  be a cardinal utility function, then the expected utility with 

respect to the probability on X  is 

( ) ( ) ( )xuxppuE
Xx
∑
∈

=,                                        (3) 

which is called the expected utility. Let { }K,, 21 ppP =  be the set of probabilities on .X  Then the 
following theorem provides the existence and uniqueness of a cardinal utility function (von Neumann and 
Morgenstern, 1947). 

 
Theorem: Existence and uniqueness of a cardinal utility function 

Let P  be the set of all probabilities on ,X  ( )f,P  be preference structure on ,P  then for any 
,, Pqp ∈  the necessary and sufficient condition of the existence of a cardinal utility function Re: →Xu  

such that 
( ) ( )quEpuEqp ,,      ≥⇔f ,  Pqp ∈∀ ,                              (4) 

is given as follows: 
 
 NM1:  ( )f,P  is weak order. 
 NM2:  ⇒  qp f ( ) ( ) , 1 1 rqrp αααα −+−+ f   ,Pr∈∀   ( )1,0∈α  
 NM3:  ⇒  rqp ff  ( ) ( ) , 1 1 rpqrp ββαα −+−+ ff  for some ( )1,0, ∈βα   
 

Furthermore, such u  is unique within the positive linear transformation (there exist h  and 0>k  such 
that kuhu +=' ) and is called a von Neumann- Morgenstern utility function. 

The expected utility model based on the expected utility hypothesis is useful as a normative model, that 
is, to find a decision to be made. However, since various paradoxes (Allais and Hagen, 1979; Ellsberg, 
1961) have been reported for the expected utility model, it is argued that the expected utility model is not an 
adequate behavioral (descriptive) model. Actually, there exist many phenomena that violate the expected 
utility hypothesis such as the Allais paradox (Allais and Hagen, 1979) and the Ellsberg (1961) paradox. In 
the next section we describe a generalized model for a measurable value function under risk and a 
measurable value function under uncertainty (Tamura, 2005) to overcome the difficulty of the expected 
utility paradoxes. 
 
 

3. BEHAVIORAL MODELS TO RESOLVE EXPECTED UTILITY PARADOXES 

3.1 Measurable value function under risk 

The expected utility model has been widely used as a normative model of decision analysis under risk. 
However, various paradoxes have been reported for the expected utility model, and it is argued that the 
expected utility model is not an adequate descriptive model. 

In this section a descriptive extension of the expected utility model to account for various paradoxes is 
shown using the concept of strength of preference (Tamura, 2005). Let X be a set of all outcomes, ,Xx∈  
and A be a set of all risky alternatives; a prospect (risky alternative) A∈l  is written as 

( )nn pppxxx ,,,;,,, 2121 KKl =                                    (5) 
that yields outcome Xxi ∈ with probability ,,,2,1 , nipi K= where∑ =1ip . 

Let A* be a nonempty subset of AA× , and f  and *f  be binary relations on A and A*, 
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respectively. Relation f  could also be a binary relation on X. We interpret ( )A∈2121 , lllfl  to mean 
that 1l  is preferred than or indifferent to 2l , and ( )A∈43214321 ,,, * llllllfll  to mean that the 
strength of preference for 1l  over 2l  is greater than or equal to the strength of preference for 3l  over 

4l . 
We postulate that ( )**,, fAA  takes a positive difference structure that is based on the axioms 

described by Kranz et al. [7]. The axioms imply that there exists a real-valued function F on A such that for 
all A∈4321 ,,, llll , if  21 lfl and  ,43 lfl  then 

( ) ( ) ( ) ( )43214321      * llllllfll FFFF −≥−⇔                        (6) 

Since F is unique up to a positive linear transformation, it is a cardinal function. It is natural to hold for 

A∈321 ,, lll  that 

213231      * lflllfll ⇔ .                                    (7) 

Then from Eq. (6) we obtain 

( ) ( ).      2121 lllfl FF ≥⇔                                   (8) 

Thus, F is a value function on A and, in view of Eq. (6), it is a measurable value function. 
We assume that the decision maker will try to maximize the value (or utility) of a prospect (risky 

alternative) A∈l , which is given by the general form as follows: 
( ) ( )ii

iAA
pxfF , max max ∑

∈∈
=
ll

l                                   (9) 

where ( )pxf ,  denotes the value (strength of preference) for an outcome x which comes out with 
probability p. This function is called the measurable value function under risk. The main objectives here 
are to give an appropriate decomposition and interpretation of ( )pxf ,  and to explore its descriptive 
implications to account for the various paradoxes. 

The model of Eq. (9) is reduced to the expected utility form by setting 

( ) ( )xpupxf =,                                    (10) 

when ( )xu  is regarded as a von Neumann-Morgenstern utility function. The prospect theory of 
Kahneman and Tversky (1979) is obtained by setting 

( ) ( ) ( )xvppxf  , π=                                (11) 

where ( )pπ  denotes a weighting function for probability and ( )xv  a value function for outcome. In this 
model the value of each outcome is multiplied by a decision weight for probability (not by probability 
itself). 

Extending this Kahneman-Tversky model we obtain a decomposition form 

( ) ( ) ( )xvxpwpxf  |, =                                    (12) 

where 

( ) ( )
( )1,

,|
xf

pxfxpw ≡                                   (13a) 

( ) ( )1|xvxv ≡                                   (13b) 
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( ) ( )
( )pxf

pxfpxv
*,
,| ≡                                   (13c) 

and x* denotes the best outcome. The expected utility model, Eq. (10), and Kahneman-Tversky model, Eq. 
(11), are included in our model, Eq. (12), as a special case. Eq. (13b) implies that v(x) denotes a 
measurable value function under certainty. Therefore, our model, Eq. (12), also includes Dyer and Sarin’s 
(1979) model as a special case. 

The model of Eq. (12) could also be written as 

( ) ( ) ( )pxvpwpxf | , =                            (14) 

where 

( ) ( )*| xpwpw ≡ .                                   (15) 

We assume that 

( ) Xxxf ∈∀=      ,00,                           (16a) 

( ) [ ]1,0     ,0, ∈∀= ppxf R                           (16b) 

where XxR ∈  denotes the reference point (e.g. status quo). The better region on X compared with Rx  
is called the gain domain and the worse region the loss domain. We also assume that ( ) 0, ≥pxf  in the 
gain domain and ( ) 0, <pxf  in the loss domain. 

It will be shown that the conditional weighting function ( ),| xpw that is an outcome-dependent, 
non-additive probability, describes the strength of preference for probability under the given conditional 
level of outcome, and ( )pxv |  describes the strength of preference for outcome under the given 
conditional level of probability. 

In interpreting the descriptive model ( )pxf ,  we need to interpret F such that Eq. (6) holds. For all 
,,,, 4321 Xxxxx ∈ ]1,0[∈α  and Xy∈  such that 4321 xxxx fff , we consider four alternatives: 

( ) , 1,;,11 αα −= yxl  ( ) , 1,;,22 αα −= yxl  ( ) , 1,;,33 αα −= yxl  ( ). 1,;,44 αα −= yxl    (17) 

In this case we obtain 

    * 4321 llfll ( ) ( ) ( ) ( )αααα ,,,,    4321 xfxfxfxf −≥−⇔                 (18a) 

( ) ( ) ( ) ( )αααα ||||     4321 xvxvxvxv −≥−⇔ .               (18b) 

Therefore, the value function ( )pxv |  defined by Eq. (13c) represents the strength of preference for the 
four risky alternatives in Eq. (17). 

On the other hand, for all [ ]1,0,,, 4321 ∈αααα , Xx∈  and ,XxR ∈  we consider four 
alternatives: 

( ) ( ), 1,;,'   , 1,;,' 222111 αααα −=−= RR xxxx ll ( ) ( ), 1,;,'   , 1,;,' 444333 αααα −=−= RR xxxx ll   (19) 

then we obtain 

 ''*'' 4321 llfll   ⇔ ( ) ( ) ( ) ( )4321 ,,,, αααα xfxfxfxf −≥−              (20a) 

  ⇔ ( ) ( ) ( ) ( ). ,,|| 4321 xwxwxwxw αααα −≥−             (20b) 

Therefore, the weighting function defined by Eq. (13a) represents the strength of preference for the four 
risky alternatives in Eq. (19). 
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The above discussion asserts that the descriptive model ( )pxf ,  represents the measurable value 
function under risk to evaluate the outcome Xx∈  that comes out with probability p. The 
Kahneman-Tversky model of Eq. (11) could explain a so-called certainty effect to resolve the Allais 
paradox. Our descriptive model ( )pxf , could also resolve the Allais paradox. 

It is well known that the expected utility model is not an appropriate model for modeling extreme 
events with low probability and high outcome. In Tamura, et al. (2000) it is shown that our descriptive 
model could resolve such paradox in application to the public sector. 
 

3.2 Measurable value function under uncertainty 

In this section we deal with the case where the probability of occurrence for each event is unknown. 
When we describe the degree of ignorance and uncertainty by the basic probability of Dempster and Shafer 
(1976) theory, the problem is how to represent the value of a set element in constructing a measurable value 
function under uncertainty based on this concept. 

In the Dempster-Shafer theory of probability let ( )iAμ  be basic probability which could be assigned 
by any subset iA  of Θ , where Θ  denotes a set containing every possible element. The basic 
probability ( )iAμ  can be regarded as a semimobile probability mass. Let Θ=Λ 2  be a set containing 
every subset of Θ . Then the basic probability ( )iAμ  is defined on Λ  and takes a value contained in 
[0,1]. When ( )iAμ >0, iA  is called the focal element or the set element and the following conditions 
hold: 

( ) 0=φμ ,     ( )∑
∈

=
AA

i
i

A 1μ                            (21) 

where φ  denotes an empty set. 
Let the value function under uncertainty based on this basic probability be 

( ) ( ) ( )μμμ |* ',* BvwBf =                            (22) 

where B denotes a set element, μ  denotes the basic probability, 'w  denotes the weighting function for 
the basic probability, and v* denotes the value function with respect to a set element. The set element B is a 
subset of .2Θ=Λ  Eq. (22) is an extended version of the value function, Eq. (14), where an element is 
extended to a set element and the Bayes’ probabilty is extended to the Dempster-Shafer basic probability. 

For identifying v*, we need to find the preference relations among set elements, which is not an easy 
task. If the number of elements contained in the set Θ  is getting larger, and the set element B contains a 
considerable number of elements, it is not practical to find v* as a function of B. To cope with this 
difficulty we could use some appropriate axiom of dominance as follows:. 
 
Axiom of Dominance 1.  

In the set element B let the worst outcome be Bm  and the best outcome be BM . For any 
Θ=Λ⊂ 22 ,1 BB   

                           2 1         , 2121 BBMMmm BBBB ppp ⇒                        (23) 

and 

.2~1      ~  ,~ 2121 BBMMmm BBBB ⇒                       (24) 

Our descriptive model ( )μ,* Bf  could resolve the Ellsberg paradox by restricting a set element B to 

( ){ }MmMm  :, pΘ×Θ∈=Ω                    (25) 
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where m and M denote the worst and the best outcome in the set element B, respectively. In this case Eq. 
(22) is reduced to 

( ) ( ) ( )μμμ |* ',* Ω=Ω vwf .                   (26) 

Suppose we look at an index of optimism ( )Mm,α  such that the following two alternatives are 
indifferent (Jaffray 1988). 
 
Alternative 1. One can receive m for the worst case and M for the best case. There exists no other 

information. 
Alternative 2. One receives M with probability ( )Mm,α  and receives m with probability ( )Mm,1 α− , 

where ( ) 1,0 << Mmα . 
 
If one is quite optimistic, ( )Mm,α  becomes nearly equal to 1, or if one is quite pessimistic, ( )Mm,α  
becomes nearly equal to zero. If we incorporate this optimism index ( )Mm,α  in Eq. (26), the value 
function is obtained as 

( ) ( )( )μμ |,*|* Mmvv =Ω  ( ) ( ) ( )( ) ( )μαμα |' ,1|' , mvMmMvMm −+=       (27)  

where 'v  denotes a value function for a single element. 
Incorporating Dempster-Shafer probability theory in the descriptive model ( )μ,* Ωf  of a value 

function under uncertainty, we could model the lack of belief which cannot be modeled by Bayes’ 
probability theory. As the result our descriptive model ( )μ,* Ωf  could resolve the Ellsberg paradox as 
follows. 
 
 

3.3 Resolving Ellsberg paradox 
 
Suppose an urn contains 30 balls coloured red, black or white. We know that 10 of 30 balls are red, but 

for the other 20 balls we know only that each of these balls is either black or white. Suppose we pick a ball 
from this urn, and consider four events as follows: 

 
 a. We will get 100 dollars if we pick a red ball. 

b. We will get 100 dollars if we pick a black ball. 
c. We will get 100 dollars if we pick a red or white ball. 
d. We will get 100 dollars if we pick a black or white ball. 

 
Many people show the preference (Ellsberg, 1961), 

cdba ff    , .                                   (28) 

The probability of picking up a red ball is 1/3. Let bp  and wp  be the probability of picking up a black 
ball and a white ball, respectively. Then 

3
2

=+ wb pp .                                   (29) 

The expected utility theory says that 

( ) ( )
3
1    11

3
1    <⇒>⇒ bb pMupMuba f                       (30) 
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( ) ( ) ( )   11
3
11

3
2   MupMuMucd w+>⇒f                      (31a) 

3
1      

3
1   >⇒<⇒ bw pp                           (31b) 

where u denotes a von Neumann-Morgenstern utility function and 1M=100 dollars. Eqs. (30) and (31b) are 
obviously contradictory. This phenomenon is called the Ellsberg paradox. Therefore, the expected utility 
theory cannot represent the preference when the probability of each event is not known but only the basic 
probability for a set of events is known. This phenomenon shows that one prefers the events with known 
probability and is called the sure-thing principle (Kranz, et al., 1971). 

How can we explain the preference of this Ellsberg paradox by using the descriptive model ( )μ,* Ωf  
of a measurable value function under uncertainty? Let {R} be the event of picking a red ball and {B,W} be 
the set element of picking a black or white ball. Then the basic probability is written as 

{ }( ) { }( )
3
2,   ,

3
1

== WBR μμ                            (32) 

In this case a set Θ  containing every possible event is written as 

{ }M1,0=Θ .                                  (33) 

Table 1:  Basic probability for each event. 

Alternative             Event 
                                            {0}    {1M}   {0, 1M} 

a    2/3     1/3     0 

b    1/3      0     2/3 

c           0      1/3     2/3 

d 1/3     2/3     0 

 

Table 1 shows the basic probability of getting each event for each alternative. The value for each 
alternative is given by 

( ) { } { } ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

3
1|1' 

3
1'

3
2|0' 

3
2' MvwvwaV                     (34a) 

( ) { } { } ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

3
2|1,0' 

3
2'

3
1|0' 

3
1' MvwvwbV                   (34b) 

( ) { } { } ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

3
2|1,0' 

3
2'

3
1|1' 

3
1' MvwMvwcV                  (34c) 

( ) { } { } ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

3
2|1' 

3
2'

3
1|0' 

3
1' MvwvwdV .                   (34d) 

                              
In the set Θ  let 0x  and *x  be the worst outcome and the best outcome, respectively, then 

Mxx 1*     ,00 == .                           (35) 

Therefore, we obtain 
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{ }( ) { }( ) .     ,1|1'     ,0|0' μμμ ∀== Mvv                        (36) 

Let an index of optimism be ( )M1,0αα = , then 

( ) ( )bVaVba >⇒      f                           (37a) 

{ } ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛>⎟

⎠
⎞

⎜
⎝
⎛⇒

3
2|1,0' 

3
2'

3
1' Mvww                (37b) 

⎟
⎠
⎞

⎜
⎝
⎛>⎟

⎠
⎞

⎜
⎝
⎛⇒

3
2'

3
1'   ww α                       (37c) 

 

( ) ( )cVdVcd >⇒      f                           (38a) 

{ } ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛>⎟

⎠
⎞

⎜
⎝
⎛⇒

3
2|1,0' 

3
2'

3
1'

3
2' Mvwww         

(38b) 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−<⎟

⎠
⎞

⎜
⎝
⎛⇒

3
2' 1

3
1'   ww α .                  (38c) 

To hold these preference relation we need to have ( )M1,0αα =  such that 

αα >
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

>
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

3
2'

3
1'

3
2'

     ,

3
2'

3
1'

w

ww

w

w
.                      (39) 

If ( )M1,0αα = <0.5, Eq. (39) holds. This situation shows that, in general, one is pessimistic about events 
with unknown probability. The Ellsberg paradox is resolved by the descriptive model ( )μ,* Ωf  of a 
value function under uncertainty. 
 
 
3.4 Potential applicability to modeling public sector decision problems 
 

Recent increase of carbon dioxide concentration around the globe is getting serious and it is said that 
the resulting greenhouse effect and global warming may cause serious harm in our lives. Therefore, we 
need to restrict the emission of carbon dioxide and other greenhouse gas somehow. By using a value 
function under uncertainty shown in 3.2 we could deal with a set element like { }21, dd , where 
 
  1d : get damage caused by unusual weather due to global warming. 
  2d : get damage caused by unusual weather which is not related with global warming. 
 

Actually, when we get damage caused by unusual weather, we do not know whether it is due to global 
warming or not. Basic probability could be assigned to such a set element{ }21, dd . Then, we could 
construct a measurable value function under uncertainty for evaluating the alternative policies to decrease 
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the emission of carbon dioxide for avoiding global warming. The measurable value function under 
uncertainty could also evaluate the preference of various type of decision: ordinary, pessimistic or 
optimistic. 
 
 
4. PROSPECT THEORY UNDER UNCERTAINTY 
 
4.1 Theory 

 
Prospect theory (Kahneman and Tversky 1979) was proposed in order to explain people’s decision 

making such that 
 

(a) People’s attitude to risk is loss averse.  
(b) People feel that weight for very small probability is disproportionate.  

 
We denote the prospect that yields an outcome xj with probability njp j ,,2,1, K=  by Eq. (5). In prospect 

theory (PT), the value V for the prospect (5) is evaluated using the evaluation function 

                          ∑
=

=
n

j
jj xvpV

1
)()(π                             (40) 

where the value function v  is convex with a gentle curve in the gain domain, while it is concave and its 
curve is steeper in the loss domain, as shown in Figure 1. This shows that people, in general, are loss 
averse.  

The weighting function π  is a convex function as shown in Figure 2, so a small probability is 
weighted higher and middle or large probabilities are weighted lower. However, this weighting function is 
not defined near the end points 0 and 1. The dotted line in Figure 2 shows the case for the expected utility 
(EU) model.  
                                     
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Value function. 
 
 
 
 
 
 

Value

Losses Gains
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Figure 2: Weighting function used in PT. 
 

Using PT, we are not able to deal with cases where the probability of occurrence for each event is 
unknown. Here we use the idea of a measurable value function under uncertainty as described in 3.2 and 
we develop PT under uncertainty (PTU) (Tamura and Miura, 2007).  

Let the value function in PTU, based on the Dempster-Shafer basic probability, be  

                          )(*)('),(* BvBf μπμ =                             (41) 

as a special case of Eq. (22). Using Axiom of Dominance 1 and, by restricting a set element B to Eq. (25), 
Eq. (41) is reduced to 

                            ).(*)('),(* Ω=Ω vf μπμ                            (42) 

However, there exist some cases for which Axiom of Dominance 1 is unsuitable. Then we introduce Axiom 
of Dominance 2 (Tamura and Miura 2007) which is more strict than Axiom of Dominance 1 as follows: 
  
Axiom of Dominance 2.  

Let the worst outcome be 1m  and the best outcome be 1M  in the set element 1B , and let the worst 
outcome be 2m  and the best outcome be 2M  in the set element 2B . Moreover, let the imaginary 
elements whose values are equal to the average values of 21, BB  be 21, gg , respectively. Then  

21212121  , , BBggMMmm pppp ⇒                         (43) 

21212121 ~~ ,~ ,~ BBggMMmm ⇒                    (44) 

where  

,
)(

)(    ,
)(

)(
2

1
2

1

1
1

21

n

bv
gv

n

av
gv

n

i
i

n

i
i ∑∑

== ==  

1n  denotes the number of elements in the set element 1B  and 2n  denotes the number of elements in 
the set element 2B .  

Axiom of Dominance 2 is too strict to use practically, so we try to relax it. Someone attaches 
importance to the best outcome and chooses an alternative, someone attaches importance to the worst 

PT model

Expected 
utility model

0                             0.5                          1.0
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outcome, and someone pays attention to the whole. We introduce the model that properly describes this 
situation.  
 
Definition.  

Let the elements in the set element B  be naaa ,,, 21 K  such that ,1+ii aa p  ,1,,2,1 −= ni K  the 
value of element niai ,,2,1  , K=  be )( iav  and the average value of elements be  

( ) ( )∑
=

=
n

i
iavgv

1
 

Further, let the pessimism index decided by the question for the element ma =1  whose outcome is the 
worst and the element Man =  whose outcome is the best be ),( Mmα . We assume the value h  of the 
set element B  to be 

),()|( MmcbeaBh αα −+=     if 
2

)()()( mvMvgv +
≠                  (45) 

and 

),()|( MmbaBh αα +=     if 
2

)()()( mvMvgv +
=             (46) 

where unknown parameters cba ,,  are decided by  

).()1|(   ),()5.0|(   ),()0|( mvBhgvBhMvBh ===  

We introduce Axiom of Dominance 3 in order to evaluate values based on the above definition as 
follows:  
 
Axiom of Dominance 3.  

2121 )|()|( BBBhBh p⇒< αα                             (47) 

and  

2121 ~)|()|( BBBhBh ⇒= αα                           (48) 

 
By using Axiom of Dominance 3, we are able to write the value function in PTU as  

).|()(')),|((* αμπμα BhBhf =                           (49) 

We could properly describe the value judgment of pessimistic people and optimistic people, respectively, 
by using Eq. (49).  

We are able to evaluate the value V  of the prospect that includes the case where the probability of 
occurrence for each element is unknown but the basic probability of occurrence for each set element is 
known through the evaluation function 

∑
=

=
n

j
jj BvV

1
)(*)(μπ                            (50) 

where π  denotes the weighting function of PT and *v  denotes the value function with respect to a set 
element jB . 
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4.2 Value Judgment of the Sense of Security for Nursing Care Robots 
 

Japan is currently an aging society composed largely of elderly people, and the proportion of the aged 
in the population is increasing year by year. This causes problems because the number of people who need 
care is increasing every year. It is estimated that more than 4% of Japanese will need care in 2025. 
However, the number of nurses is less than required. In such a society, people increasingly turn to 
machines and tools for nursing care or welfare and some are already being put to practical use, such as 
wheelchairs, nursing care beds and so forth. They are becoming more popular. However, more research 
and development of nursing care robots is urgently required because of the diversification of people who 
need care.  

In Tamura, et al., 2005 it is assumed that certain types of nursing care robot were available and tried to 
evaluate the sense of security that they provided. For this purpose, we used expected utility theory (von 
Neumann and Morgenstern, 1947), prospect theory (PT) (Kahneman and Tversky, 1979) and cumulative 
prospect theory (Tversky and Kahneman 1992). We conducted a survey of people who participated in 
nursing care activities, and compared the results. It showed that PT is the most suitable for evaluating the 
sense of security provided by nursing care robots among the three utility theoretic approaches above.  

We also considered a more practical case in which we know the total probability for some outcomes 
but not the probability for each outcome (Tamura and Miura, 2007). In order to deal with such cases, we 
use PTU. 

We now attempt to evaluate the sense of security that people feel in two different situations and 
compare the results. One is a situation in which all probabilities for all outcomes are known and the other 
is a situation in which probabilities for some outcomes are unknown but the total probability for them is 
known. We designate following two cases as ones of the second category where the probabilities for some 
outcomes are unknown.  
 
Case 1. You do not know which will care for you, a human nurse or a nursing care robot, when you ask a 

nursing care center to care for you.  
Case 2. You do not know what type of robot will care for you when you borrow a nursing care robot from a 

nursing care center or the government.  
 

The subjects of this experiment are eleven people who live either in Ikeda City or in Minoo City in the 
Osaka Prefecture, Japan. Seven of them are participating in the nursing care activities and four of them 
have a family member who needs care. Their ages are between the twenties and fifties, and four of them 
are male. We assumed seven types of hypothetical nursing care robots: Robot A, Robot B, …, Robot G 
with different care levels, different appearance and different rental fees. 
 

Table 2: Probability/basic probability of obtaining each outcome. 

Outcome         Society 1  Society 2               

No             0.35       0.25 

Fa             0.35       0.35 

Nu          0.30       0.30 

Nu or Ro           0         0.40 
 
 

For Case 1 we describe outcomes and probabilities/basic probabilities in Table 2 where No, Fa, Nu, Ro 
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denote the outcomes ‘no care’, ‘care by family’, ‘care by nurse’, ‘care by robot’, respectively. In this table, 

Society 1 denotes the society in which nursing care robots do not exist and Society 2 denotes the society 

where they exist. Then the value 1V  of Society 1 and the value 2V  of Society 2, are evaluated as 

follows: 

),()30.0( )()35.0()()35.0(1 NuvFavNovV πππ ++=  

).,(*)40.0( )()35.0()()25.0(2 RoNuvFavNovV πππ ++=  

Here ),(* RoNuv  could be described by using the pessimism index ),( Mmα  as 

)()),(1()(),(),(* MvMmmvMmRoNuv αα −+=  

where m  denotes the worse outcome between Nu and Ro, and M denotes the better one between them. 
Using these equations, we try to evaluate each situation practically.  

The results of value judgment show that the societies where any nursing care robots exist are preferred 
over a society where nursing care robots do not exist when every probability is known, but this preference 
is reversed in the situation where some probabilities are unknown. This result is consistent with the actual 
preference of the subject. Similarly, for all individuals, the results of evaluation are consistent with their 
actual preference, so we could say that PTU is a suitable model for evaluating the sense of security 
provided by nursing care robots in Case 1.  

For Case 2 the actual type of robot which cares for the subject is unknown. The value 1V  of 
Society 1 and the value 2V  of Society 2, are evaluated by  

),()30.0()()35.0()()35.0(1 NuvFavNovV πππ ++=  

).(*)10.0()()30.0()()35.0()()25.0(2 RovNuvFavNovV ππππ +++=  

where Ro is a set element which consists of outcomes ‘care by robot A’, ‘care by robot B’,…, ‘care by 
robot G’. Here )(* Rov  could be represented by using the pessimism index ),( Mmα  obtained by the 
question for the worst robot and the best robot as  

)|()(* αRohRov =  

where h  denotes the value function defined by Eqs. (45) and (46). The result of the value judgment 
indicates a preference for the situation that the type of robot is unknown over the situation that is care 
provided by robot C, D, E, but the reverse if care is provided by robot A, B, F, G. The value of “unknown” 
is lower than the average of the values of robots A, B,…, G. This result is consistent with actual 
preferences and every result agreed well with each individual’s preference.  

We evaluated quantitatively the sense of security provided by nursing care robots in the case where 
probabilities for some outcomes are unknown. Furthermore, we showed that the results of evaluation 
correspond to the actual individuals’ preference quite well. We hope that PTU will be put into practical use 
in order to evaluate the value of sense of security provided by nursing care robots or something else that 
will be developed hereafter. We also found that people feel anxious if circumstances are not clear. It shows 
that publishing information is important to give people a good sense of security.  
 
 
5. CONCLUDING REMARKS 
 

Behavioral models of individual decision making have been described. In the model, 
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outcome-dependent, non-additive probabilities are introduced as a measurable value function under risk 
where probability of each event occurring is postulated to be known. The effective application of this 
approach to the public sector is shown in modeling risks of extreme events with low probability and high 
outcome. The measurable value function under uncertainty is also described where the basic probability for 
a set of events is known but the probability of each event occurring is not. It is shown that the Ellsberg 
paradox is consistently resolved by using this model. The potential applicability to the global environmental 
problem is also noted. 

By using the idea of measurable value function under uncertainty, we extended the prospect theory 
(PT) of Kahneman-Tversky to the prospect theory under uncertainty (PTU) and evaluated quantitatively 
the sense of security provided by nursing care robots in the case where probabilities for some outcomes are 
unknown. Furthermore, we showed that the results of this evaluation are quite consistent with the actual 
individuals’ preference. We hope that PTU will be put to practical use in order to evaluate the sense of 
security provided by nursing care robots or something else that will be developed hereafter. We also found 
that people feel anxious if outcomes are not clear. It shows that publishing information is important to give 
people a good sense of security.  

In this article we have described value judgment of an individual, but the value judgment of society is 
yet to be developed, under further research. 
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