

関西大学政策グリッドコンピューティング実験センターからのお願い

本ディスカッションペーパーシリーズを転載，引用，参照されたい場合には、

ご面倒ですが、弊センター（pglab@jm.kansai-u.ac.jp）宛に

ご連絡いただきますようお願い申しあげます。

Attention from Policy Grid Computing Laboratory, Kansai University

Please reprint, cite or quote WITH consulting Kansai University Policy
Grid Computing Laboratory (pglab@jm.kansai-u.ac.jp).

 1

Performance Improvement of GridRPC-based

Multi-Agent Simulation Software

Hiroshi ARIKAWA1, Sen-ichi MORISHITA2,
and Tadahiko MURATA1, 2

Abstract

This paper describes a method to improve the performance of GridRPC-based

Multi-Agent Simulation (MAS) software. To show realistic simulation results to policy

makers in governments and local communities, a large number of agents should be

implemented in the software. So far we have been developing a large-scale MAS software

using two traditional programming model, Message Passing Interface (MPI) and Grid

Remote Procedure Call (GridRPC), for policy making assistance on parallel and

distributed computing system such as cluster or computing grid system. In our previous

work, we have seen that it is difficult to reduce the computation time using the

GridRPC-based MAS application. In this paper, we propose a new programming

technique for MAS to reduce the computation time of GridRPC-based MAS application.

Our proposed technique is to combine GridRPC approach with MPI approach. We firstly

explain the programming technique for combining GridRPC approach with MPI approach.

Then we evaluate MAS software with our proposed technique. We show that the

performance of GridRPC-based MAS software can be improved.

Keyword: Large Scale Multi-Agent Simulation, Remote Procedure Call for Grid (GridRPC),

Combined Approach, Message-Passing Interface (MPI), Performance Evaluation

1 Policy Grid Computing Laboratory, Kansai University

2 Department of Informatics, Kansai University

 2

1. Introduction

Multi-Agent Simulation (MAS) is one of many promising research field in artificial intelligence.

Since 1990s, computer simulations in the social sciences have attracted many social scientists [1].

Social science includes various research fields such as sociology, economics, social psychology,

organization theory, political science, demography, anthropology and archaeology. One of reasons

why MAS is employed for social simulation is its ability to imitate social system behaviors [2-5].

Consider economics for example. The advantage of MAS for economics is that MAS can help to

investigate an economic model with social interaction. Manski [6] investigates the influence of

social interactions in economics and explains three social interactions: 1) constraint interactions, 2)

expectation interactions, and 3) preference interactions. In addition, Manski suggests that an

economic analysis should consider the social interactions.

Our goal is to assist social scientists to improve their model for policy making. To improve their

simulation model with considering each subject, they need huge computing power to implement

their models. Therefore we have to implement the MAS software on high performance computing

system. Recently, several studies have been made on how to apply the MAS software for high

performance computing system [7-8,12-14]. Timm & Pawlaszczyk [12] show the speedup ratio

using their grid architecture. But their applications do not have a communication between agents a

different computing resource. Lee et al.[13] proposed a way to decentralize MAS to share the

information among multiple agents on the computing grid system. However, they did not show any

experimental results in their paper. Takahashi & Mizuta [14] show how to reduce the amount of

transmission among multiple nodes in supercomputer. They simply proposed to make groups of

agents who communicate heavily each other in order to reduce the transmission among group. They

show their expectation to reduce the computation time using multiple nodes, but did not show it

using real computational resources and how to implement MAS program in supercomputer.

We have been designing and implementing various MAS software for policy making assistance

on computing grid system [7-8]. Arikawa & Murata [7] employed computing grid systems to

examine the huge number of parameters in an application of day care center allocation problem.

Murata et al.[8] found the effective condition of the large-scale MAS in homogeneous cluster

computer, and they proposed how to parallelize MAS softwares using message passing approach

and remote procedure call approach. They confirmed that the computation time of MAS software

with message passing approach can be effectively improved on homogeneous cluster computer.

However, they did not show how to reduce the computation time of MAS software with remote

procedure call approach.

 3

0-10 10-20 20-30 30-40 40-50

Figure 1. An Example of Sugarscape Model.

We propose a parallelization approach to reduce the computation time of MAS software on

computing grid system. Our proposed approach combines remote procedure call approach with

message passing approach, and it can achieve the parallelization of MAS software as much as

possible. In this paper, we describe a performance improving approach of MAS software on

computing grid system. Then, we evaluate the performance of MAS software with our proposed

approach, and we show its effectiveness using experiments with our cluster.

2. Implementation of a Large-Scale MAS Software on Computing Grid System

2.1 Target Simulation

We employ Sugarscape model as an environment in MAS [9]. Sugarscape model has multiple

agents in the environment where sugar-like resources are available for the agents. Agents should

take resources as a food or living expense. When their savings become enough, they can take some

actions according to the amount of savings. Fig. 1 shows an example of distributions of resources

for agents. Agents try to find resources, take some actions in order to benefit from the environment.

In this environment, each agent tries to take resources as many as possible with conflicting with

other agents.

In this paper, we apply a MAS model proposed by Nisizaki et al.[10]. They examined three

financing methods to preserve the global commons in the simulated community. They introduced

several rules between agents and an environment to implement the environmental maintenance

 4

problem. They defined some pollutants or toxic substances that are produced by agents according to

their activity. Since the resource recovery rate in the environment decreases with the amount of the

pollutants, the community should have some measures against the pollutants. In order to establish

some measures, the community should prepare some financing plan. As for the financing methods,

they proposed three ways: voluntary contribution, lottery, and no measures. Their MAS-based

approach showed that the financing methods by the lottery may have the positive effect on the

transition of the population in the community.

The procedure of each agent in their MAS-based approach is as follows:

Step 1: Each agent decides to move to a neighboring cell according to the information within its

eyeshot.

Step 2: According to the movements of all agents, the avoidance of conflict between agents

should be made in order not to exist several agents in a single cell.

Step 3: Each agent computes the utility function when the agent makes contribution or purchases

lottery tickets. Then the probability of making contribution or purchasing lottery tickets is

defined according to the calculated utility.

Step 4: All the contribution or a part of profit from the lottery system are spent on the cost of

preserving the global commons. Then resources are restored in the environment.

Step 5: In the contribution system, according to the effectiveness of the financing system to

preserve the global commons, the consciousness of each agent to make contributions

changes. In the lottery system, the probability for each agent to joint the system depends

on win or loss in the lottery.

Step 6: Back to Step 1 until the pre-specified condition is satisfied.

2.2 Parallelization Using GridRPC

Many parallelized software are implemented generally using Message Passing Interface (MPI) or

Grid Remote Procedure Call (GridRPC). We have already proposed how to implement the

parallelization technique for MAS-based social simulation software using MPI approach and

GridRPC approach in [8]. We have shown the effectiveness of those approaches on parallel or

distributed computing system. In this paper, we show how to improve GridRPC-based MAS

software.

 5

Figure 2. MAS programming model by GridRPC

GridRPC [11] is a programming model based on a remote procedure call mechanism modified for

the computing grid system. Subprograms are prepared in remote computing resources, and the main

program is invoked subprogram on remote computing resources. That is, the feature of

programming model by GridRPC is a client-server model. Programmers can easily implement a task

parallel program for computing grid system by using GridRPC library.

Fig. 2 shows an example structure of computing resources using GridRPC approach. Their model

is suitable for the development of the software on computing grid system.

The MAS software based on the Sugarscape model consists generally of the decision making

procedure and environment maintenance procedure. The decision making procedure (Step 1) is to

execute that each agent decides to move to a neighboring cell. On the other hand, the environment

maintenance procedure in Subsection 2.1 is to execute to modify environment information. To

design a GridRPC-based MAS software, decision making procedure is enable to distribute in

assigned computing resources. In the GridRPC approach, we divide the algorithm of MAS in

Subsection 2.1 as follows (See Fig. 3):

 (1) Create the information for the environment.

(2) Create the initial information for agents.

(3) Send the information of agents to each assigned processor from the master processor (e.g.,

in Fig. 3) using an asynchronous remote procedure call module (e.g. , grpc_call_async()).

・・・・・・・・ ・・・・
・・・・

Environment Agents

 6

・

・

・

・

・

・

・

・

・

・

・

・

・

・

P1 P2 P3 P4 Pn-1 Pn

FINISH ・

(1)

(2)

(3)

(4) Step 1

(5)

(6) Step 2 & Step 3

(7) Step 4

(8) Step 5

(9) Step 6

the number
of times for
simulation

simulation
term

START

Figure 3. Simulation flow of MAS with GridRPC approach.

(4) Step 1: Each agent decides to move to a neighboring cell according to the information

within its eyeshot.

(5) Collect the decisions of agents to the master processor using a wait module (e.g.,

grpc_wait_all()).

(6) Step 2: According to the movements of all agents, the conflict between agents should be

avoid in order not to permit several agents in a single cell.

Step 3: Each agent computes the utility function when the agent makes contribution or

purchases lottery tickets. Then the probability of making contribution or purchasing lottery

tickets is defined according to the calculated utility.

(7) Step 4: Collect contributions or profits from the lottery. All the contribution or a part of

profit from the lottery system are spent on the cost of preserving the global commons.

Apply measures to reduce the pollutants.

(8) Step 5: Modify the consciousness of each agent to make contributions changes or modify

the probability for each agent to joint the system depends on win or loss in the lottery.

(9) Step 6: Collect the information to keep records of the simulation. Back to (3) until the

pre-specified condition is satisfied

 7

3. Improving Approach for GridRPC-based MAS software

3.1 Motivation

In this section, we show details of our proposed approach to reduce the computation time of a MAS

software implemented by GridRPC approach (say, GridRPC-based MAS software). It can be

executed by an assembly of geographically distributed computers, however, the parallelization by

GridRPC approach distributes only the computation of agents’ decision making to several

computing resource as shown in Subsection 2.2. That is, GridRPC-based MAS software couldn’t

reduce the computation time on cluster computer when the decision making procedure for each

agent is short.

The aim of our research is to reduce the computation time of GridRPC-based MAS software on

computing grid system. To reduce the computation time of GridRPC-based MAS software, we

propose a parallelization approach for procedures of GridRPC-based MAS software regardless of

the length of agents’ decision making procedure.

3.2 Programming Model of Improving Approach

Our design objective is to reduce the computation time of GridRPC-based MAS software. We

propose an improving approach for GridRPC-based MAS software.

Fig. 4 shows an example structure of computing resources using an improving approach. It

applies two complementary programming model, remote procedure call and message passing. To

combine remote procedure call approach with message passing approach, our proposed model

achieves task parallel processing and data parallel processing.

The computing resource of our proposed model consists of computation processors and task

submission processors. The computation processors achieve the parallelization of decision making

procedure using remote procedure call as well as the GridRPC-based MAS software. To enable the

large scale simulation, our approach divides environment information to several task submission

processors by message passing.

3.3 Implementation by Improving Approach

In this subsection, we describe how to implement MAS software by our improving approach. In

the proposed approach, we divide the algorithm of MAS in Subsection 2.1 as follows (See Fig. 5):

(1) Create the information for the sub-environment, and distribute each task submission

processor (e.g., - in Fig. 5) using a scatter module (e.g., MPI_Scatter()).

 8

Agent

・・
・・

・・
・・

・・
・・

・ ・
・ ・

・ ・
・ ・

・ ・
・ ・

Sub-Environments

RPCRPC

RPC RPC

MPI MPI

MPI

MPI

Agent

・・ ・・ ・・
・・ ・・ ・・

・・ ・・ ・・
・・ ・・ ・・

・・ ・・ ・・
・・ ・・ ・・

・ ・・ ・
・ ・・ ・・ ・

・ ・・ ・・ ・
・ ・・ ・

・ ・・ ・・ ・
・ ・・ ・・ ・

Sub-Environments

RPCRPC

RPC RPC

MPI MPI

MPI

MPI

Figure 4. Proposed MAS Programming Model.

(2) Create the initial information for agents of each sub-environment. Since the size of the

information depends on the number of agents in the sub-environment, define the amount of

the information for each task submission processor by a scatter module (e.g.,

MPI_Scatter()), then send the information using a scatter module (e.g., MPI_Scatterv()).

(3) Exchange the information from neighboring sub-environments that is required for the

processing in the sub-environment. In order to send the information from a task submission

processor, use broadcast module (e.g., MPI_Bsend()). For receiving the information, first

use a communication buffer allocation module (e.g., MPI_Probe()) to confirm the

existence of the information, then receive the information using a receive module (e.g.,

MPI_Recv()).

(4) Send the information of agents to several computation processors (e.g., - in Fig.. 5) from the

each task submission processor using an asynchronous remote procedure call module (e.g.,

grpc_call_async()).

(5) Step 1: Each agent decides to move to a neighboring cell according to the information

within its eyeshot.

(6) Collect the decisions of agents to the task submission processor using a wait module (e.g.,

grpc_wait_all()).

(7) Exchange the information of the agents who moves to another sub-environment of the other

task submission processor. Use a send module (e.g., MPI_Bsend()) for the sender, and use a

receive module (e.g., MPI_Recv()) after employing a buffer allocation and a measurement

module (e.g.,MPI_Probe() and MPI_Get_count()).

 9

START

FINISH

Pm1 Pm2Pm3Pm4 Pr1 Pr2 Pr3 Pr4 Pr5 Pr6 Pr7 Pr8

(1)

(2)

(3)

(5) Step 1

(4)

(10) Step 4

(11) Step 5

(12) Step 6

(9) Step 3

(8) Step 2
simulation

term

the number
of times for
simulation

(6)

(7)

Task submission
processor

Computation
Processor

Figure 5. Simulation Flow of MAS with Proposed Approach.

(8) Step 2: According to the movements of all agents, the avoidance of conflict between agents

should be made in order not to permit several agents in a single cell.

(9) Step 3: Each agent computes the utility function when the agent makes contribution or

purchases lottery tickets. Then the probability of making contribution or purchasing lottery

tickets is defined according to the calculated utility.

(10) Step 4: In order to collect contributions or profits from the lottery in each sub-environment,

each processor uses a reduction module (e.g., MPI_Allreduce()) to calculate the

information, then uses a gathering module (e.g., MPI_Allgather()) to define where the

measure should be applied. All the contribution or a part of profit from the lottery system

are spent on the cost of preserving the global commons.

(11) Step 5: In the contribution system, according to the effectiveness of the financing system to

preserve the global commons, the consciousness of each agent to make contributions

 10

changes. In the lottery system, the probability for each agent to joint the system depends on

win or loss in the lottery.

(12) Step 6: Collect the information of each sub-environment to keep records of the simulation

using a reduction module (e.g., MPI_Reduce()). Back to (3) until the pre-specified

condition is satisfied.

4. Performance Evaluation

In order to evaluate the performance of MAS software with the proposed improving approach on

computing grid system, we prepared two types of MAS software: GridRPC-based MAS software,

MAS software with improving approach (say proposed MAS software).

We prepared a homogeneous computing grid system using commodity computers in our

experiment. The cluster system has 40 processors with Intel Pentium 4 3.0EGHz processor and

2GByte memory in each computer. All resources are connected by a Gigabit Ethernet. We employed

MPICH 1.2.7 and OmniRPC 1.0 as MPI and GridRPC library, respectively.

When we execute MAS software for the performance evaluation, the number of simulation time

steps and initial agents are 2000 and 4320, respectively.

4.1 Computation Time

Figs. 6 and 7 show the computation time for each trial to execute GridRPC-based MAS software

and proposed MAS software on multi-node system. And Fig. 8 shows the relationship speedup ratio

and the environment size on multi-node system. To obtain the result in Fig. 8, each task submission

processor was prepared on three computation processor when we execute the GridRPC-based MAS

software and the proposed MAS software. Here “Combine 4 Nodes” and “Combine 9 Nodes”

represent the experiment results of proposed MAS software in four or nine task submission

processor. “GridRPC” represents the experiment results of GridRPC-based MAS software. In this

paper, speedup ratio defines the following function.

1001 ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

G

P

T
T

Speedup ,

where PT and GT are the computation time of proposed MAS software and GridRPC-based MAS

software, respectively.

 11

0 4 8 12 16 20 24 28 32 36 40 44
0

20

40

60

80

100

GridRPC
Combine 4 Nodes
Combine 9 Nodes

The Number of Processors

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Figure 6. Computation Time (Environment Size: 180x180).

0 4 8 12 16 20 24 28 32 36 40 44
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

GridRPC
Combine 4 Nodes
Combine 9 Nodes

The Number of Processors

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Figure 7. Computation Time (Environment Size: 720x720).

 12

180×180

360×360

540×540

720×720

900×900

1080×1080

1260×1260

1440×1440
-100

-80

-60

-40

-20

0

20

40

60

80

100

Combine 4 Nodes
Combine 9 Nodes

S
pe

ed
up

 R
at

io
 (%

)

Figure 8. Relationship Speedup Ratio and the Environment Size.

8 12 16
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000

Balancing
Normal

Number of Processors

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Figure 9. Computation Time by Effect of Load Balancing.

 13

In Fig. 6, 7 and 8, we can see that the proposed MAS software reduces the computation time as a

whole. That is, the effect of parallel processing in the part of step 2, 3, 4, 5 and 6 (see Fig. 5) has

achieved. However, Fig. 6 and 8 indicate that the execution time will increase when the proposed

MAS software was executed in nine task submission processors. Hence, we can explain that the

number of processor need not be excessively increased.

4.2 Effect of Load Balance

We investigate the effectiveness of load balancing in the proposed MAS software on four task

submission processor. The computation time of the proposed MAS software is shown in Fig. 9. To

obtain the result in Fig. 9, we execute the proposed MAS software using four task submission

processors. The environment size and the number of initial agents are 360× 360 and 4320,

respectively. Here “Balancing” represents the experiment results of the proposed MAS software

with the load balancing mechanism. “Normal” represents the experiment results of the proposed

MAS software without the load balancing mechanism. In this paper, load balancing mechanism is a

mechanism that each task submission processor changes the number of assigned computation

processor according to the number of agents.

In Fig. 9, we can see that the proposed MAS software with the load balancing mechanism reduces

the computation time.

5. Conclusion

We propose how to improve the performance of GridRPC-based MAS software for large-scale

simulation. Our improving approach is to apply two generally programming model, message

passing and remote procedure call. Then, we evaluate the MAS software with our proposed

approach. We confirm that the computation time of GridRPC-based MAS software is improved by

proposed approach. Our improving approach can dynamically obtain the memory space for

large-scale simulation from several computing resources. So, we found that the sugarscape space of

MAS can be increased by the proposed approach. Our proposed approach will be helped by

programmers who should develop large-scale social simulation software for heterogeneous

computing resources such as Grid.

 14

References

[1] N. Gilbert, K. G. Troitzsch, Simulation for the Social Scientist (Open University Press, UK), 1999.

[2] R. Conte, N. Gilbert, J. S. Sichman, “MAS and social simulation: A suitable commitment,” Proc. of

1st International Workshop on Multi-Agent Systems and Agent Based Simulation (Lecture notes in

computer science 1534, Springer, Berlin, Germany), pp. 1-9, 1998.

[3] T. Terano, S. Takahashi, D. L. Sallach, J. Rouchier (eds), Proc. of 1st World Congress on Social

Simulation, August 21-25, 2006.

[4] N. Gilbert, “A simulation of the structure of academic sciences,” Sociological Research Online, Vol.

2, No. 2 <http://www.socresonline. org.uk/2/2/3.html>, 1997.

[5] T. Murata, H. Kitano, T. Nakashima, H. Ishibuchi, “Application of a Multi-Agent Model with

Pioneers and Followers to a Day Care Center Allocation Problems,” Proc. of International

Conference on Intelligent Technologies 2003, pp.179-186, 2003.

[6] C.F.Manski, “Economic Analysis of Social Interactions” Journal of Economic Perspectives, Vol.14,

No.3, pp.115-136, 2000.

[7] H. Arikawa, T. Murata, “Implementation issues in a Grid-based multi-agent simulation system used

for increasing labor supply,” Review of Socionetwork Strategies, Vol. 1, No. 1, pp.1-13, 2007.

[8] T. Murata, H. Arikawa, S. Morishita, Taiyo Maeda, “A Design of Problem Solving Environments

for Policy Making Assistance Using MAS-based Social Simulation,” Proc. of 3rd IEEE

International Conference on e-Science and Grid Computing, pp.521-528, 2007.

[9] J. M. Epstein, R. Axtell, Growing Artificial Societies: Social science from the bottom up, MIT Press,

1996.

[10] I. Nishizaki, Y. Ueda, T. Sasaki, “Lotteries as a means of financing for preservation of the global

commons and agent-based simulation analysis,” Applied Artificial Intelligence, Vol. 19, No. 8, pp.

721-741, 2005.

[11] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, H. Casanova, “Overview of GridRPC: a

remote procedure call API for Grid Computing,” Proc. of 3rd International Workshop on Grid

Computing, pp. 274-278, 2002.

[12] M. Lees, B. Logan, R. Minson, T. Oguara, G. Theodoropoulos, “Distributed simulation of MAS,”

Proc. of the Joint Workshop on Multi Agent & Multi-Agent-Based Simulation, Autonomous Agents

& Multi Agent Systems (AAMAS), pp. 21-31, 2004.

[13] I. J. Timm, D. Pawlaszczyk, “Large scale multiagent simulation on the grid,” Proc. of 5th

International Symposium on Cluster Computing and the Grid, Vol. 1, pp. 334-341, 2005.

[14] T. Takahashi, H. Mizuta, “Efficient agent-based simulation framework for multi-node

supercomputers,” Proc. of 2006 Winter Simulation Conference, pp. 919-925, 2006.

