

■研究最前線

ナノスケールの切削加工機開発に向けて

アクチュエーターの高出力化に挑戦

省エネルギー、低コストの電子デバイス部品製造への基盤技術

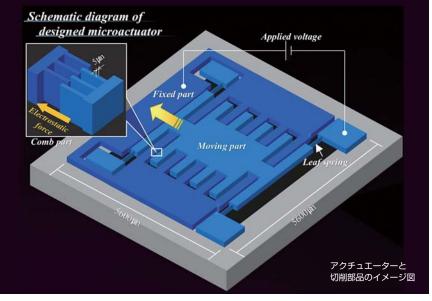
●システム理工学部

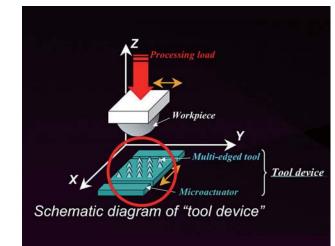
山口 智実 教授

ナノテクノロジーは、情報、医療、エネルギーなどさまざま な分野において重要な基盤技術となっています。特にナノメー トル(10億分の1メートル)単位の微細加工は、これからの省資 源・低コスト型産業に欠かせない重要な技術であり、各方面か ら強い期待が寄せられています。ナノテクノロジーへの関心が 高まる中、システム理工学部の山口智実教授は、マイクロ加工 技術の開発に向けての研究に取り組んでいます。

環境配慮型産業の発展を担うナノ加工技術

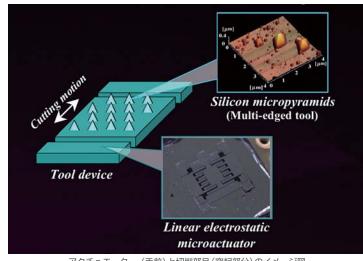
――ナノテクの中でも超小型の加工機の開発は、まだ実用化が 進んでいないそうですね。


ナノテク分野では、光や圧力を測定するセンサ技術などはす でにさまざまな分野で幅広く利用されていますが、素材に力を 加えて、切ったり曲げたりする加工技術は、現在のところ実用 の段階に達していません。しかし、巨大設備を使って大量に生産 するという考えを改め、環境に負荷を与えない、資源のむだ遺 いをしない、省スペースで必要な量だけを短時間で作っていこ うというこれからの産業のあるべき姿を考えると、マイクロマ シンへのニーズはますます大きくなることは間違いありません。 ――山口先生の微細加工技術についてご紹介ください。


私の研究室では、マイクロマシンの開発に欠かせないアクチュ エーターの開発に取り組んでいます。アクチュエーターとは、 電気などのエネルギーを与えると機械を動かす装置です。私た ちは昨年アクチュエーターを作成し、動かされる側の機械の開 発も行いました。それはナノメートルサイズの極小なヤスリの ような切削部品でした。しかしこの部品を十分に稼働させるに は、そのアクチュエーターでは全くパワーが足りなかったので す。そこで、原点に戻ってアクチュエーターの再設計を行いま した。

――今回開発されたアクチュエーターは、従来の試作品の120 倍の出力を実現しましたね。

電気エネルギーを効率よく駆動力に変えるためのデザイン変 更には頭を悩ませました。アクチュエーターには櫛の歯型をし た部分があり、この歯を細くして数を多くすれば理論上効率が あがります。しかし櫛を細くせず歯を増やしてもアクチュエー ターが大きくなるだけで、かえって逆効果になります。試行錯誤 の結果完成した今回のデザインでは、歯の数が24倍となりまし た。従来型よりも90倍の大きさになったものの、120倍という



▲研究室で開発したマイク ロマシンのしくみ。赤い丸 の部分が今回開発したアク チュエーターと切削部品。 ヤスリのように下から素材

削られる素材(半球部分)。基板の 大きさは一辺約3ミリメートル▶

大きな駆動力を実現し、切削部品を十分に動かすことができま した。今回の研究からは、将来のマイクロマシン開発につながる 貴重なノウハウが得られたと実感しています。今後はさらに高 出力なアクチュエーターの開発に取り組みたいと考えています。

アクチュエーター (手前)と切削部品(突起部分)のイメージ図

アクチュエーターと切削部品の顕微鏡写真。実際の大きさは一辺が約5600マイクロメートル

DEVELOPMENT OF MESO-SIZED MACHINE WITH MICROACTUATOR AND MICROPYRAMIDS

■未知の分野を切り開くのは、知識の蓄積と豊かな想像力

――マイクロマシンの研究で注意しているのはどんな点ですか?

小さいものに携わっているという認識をしっかり持つという ことですね。ナノスケールの世界では、静電気や材料表面の粘 着力など、マクロスケールではあまり注意を払う必要のない要 因も大きな影響を与えます。このような作用について理解を深 めるにはしっかり知識を積み重ねていく努力と、可視化できな い世界で「今、何が起きているのか」を視覚的にイメージする想 像力の両方が必要です。

─研究の発展につながるアイディアはどうやって生み出され るのですか?

私はつねづね学生たちに「思いついたら、とにかくやってみ よう」と言います。ナノテクノロジーに限らず素晴らしい発想 は、挑戦と失敗を繰り返すことから生まれるものではないでしょ うか。これからも、頭と体の両方を動かして新しいことに取り 組んでいきたいと思います。