

■研究最前線

チタンの研究

低コストチタン合金の開発

医療・介護福祉分野での利用拡大を目指す

●化学生命工学部 池田 勝彦 教授 関西大学大学院在学中に本格的 な研究を始めて30年余り、池田 勝彦教授はチタン合金の研究一

筋に歩んできた。軽く、強く、さびず、生体適合性に優れ るというチタン合金の特性を生かし、より広く社会で利用 してもらうために取り組んできた低コスト化の研究は、従 来のチタン研究の常識を打ち破る独創的な挑戦だった。

池田教授も執筆者として名を連ねた『金属材料の加工と組織』(2010年、共立出版)▶

Low cost titanium alloys

■常識にとらわれない研究で低コスト化に挑戦

――材料としてのチタン合金の 良さとは、どのようなものです

まず、比強度が高いことが挙 げられます。つまり、同じ強度 の物を作る時、より軽くできる ということです。航空機にチタ ン合金が使われるのはこのため です。また耐食性が高く、海水 にもさびません。チタン合金の 優れた特性は、まずこの2点だと 私は考えています。

さらに良いところを挙げれば、 生体適合性に優れ、身体に優し いということ。人工関節や骨折 した骨を固定し、治癒を促すた めのプレートなどがチタン合金 で作られています。

-チタンの特性は、どのよう な分野で役立ちますか?

このような特性を持ったチタンは、戦後、各国で軍事目的の 需要が伸びました。しかし、日本では平和的な民生用の開発が 進められてきたという歴史があります。

チタン合金でいろいろなものを作ることができます。私たち の環境材料研究室では、この軽くて強く、生体との親和性が高 い特性を生かして、医療・介護福祉用品への応用の研究に力を 入れています。

ベータチタン合金は、熱処理前は加工性に優れ、処理後はチ タン合金の中でも高い強度を得られるので、車椅子のフレーム に適しています。しかし、高価なレアメタルであるバナジウム やモリブデンを大量に添加する必要があり、その結果価格が高 くなり材料としてはなかなか採用されていません。チタン合金 を世の中でより活用してもらうためには、低コスト化が課題と なっています。また、限りある資源や素材を利用しながら、持 続可能な社会を実現するためには、希少な金属材料ではなく、 できるだけ地殻埋蔵量の多い金属を使うことも課題となってき ています。この2つの課題に対応するために、私はベータチタ ン合金の特性はそのままに、バナジウム、モリブデンなどに代 えて、クロム、鉄、あるいはアルミニウム、マンガンを添加し た合金の開発に長く取り組んできました。

――低コストのチタン合金の開発で苦心されたことはあります か?

この研究について、実は批判を受けたこともありました。鉄 はチタン合金の特性を劣化させる不純物と見なされていて、そ のような物質を大量に添加するのはタブーだったからです。そ れでも、低コスト化を目指すことを第一の目標に開発を進め、 特殊鋼メーカーと共同開発した合金は、一般市場に流通するよ うになりました。地道に続けていたら、非常識が常識になった のです。

――車椅子など介護福祉用のチタン合金の使用は広がっていま すか?

まだまだ難しいですね。アルミニウムやプラスチックスに比 べるとチタン合金はやはり価格で勝てませんから。今後、市場 のニーズがどのように変わっていくかは分かりませんが、チタ ン合金が必要とされる場面がいつか増えるだろうと思っていま す。その時に、ニーズに応えられる選択肢となるものを用意し

ておきたい。それが材料開発者の役目であり、チタン合金にし か実現できない領域は必ずあると考えています。

■強く、自由な色で意外な用途

――チタン合金にしか実現できない領域とは?

まず、さびたり腐ったりしませんから、水回り製品が考えら れます。例えば、障がいのある方を入浴させる時に使うリフト の部品などに適していますし、浴室などの手すりにも向いてい ます。チタン合金は表面を酸化させれば、光触媒による抗菌効 果を発揮しますし、他の金属製の手すりに比べて握った時に冷 たさを感じにくいです。

金属であるにもかかわらず、あまり冷たく感じないというの は、チタン合金の熱伝導度と体積比熱が低いという性質から起 こる現象ですが、同じ性質からチタン合金は高い滑雪性を得る

柔軟な発想は、好奇心旺盛な先生の研究室で生まれる

Research Front Line

ことができます。例えば、チタン合金製の屋根に雪が積もった としたら、屋根と積雪の間に水の層ができて、雪下ろしをしな くても、雪が勝手に滑り落ちてくれるのです。

――チタン合金は建築の世界ではよく使われているのですか?

ええ、そうですね。面白いところでは、古い茶室などの屋根 や樋で、緑青を帯びた銅の代わりに、陽極酸化で緑青のように 発色したチタン建材が使われていることがあります。陽極酸化 はプラス電極に通電して強制的に酸化膜をつくる加工で、電圧 の大きさによって色をコントロールできます。チタン合金は銅 よりも耐食性に優れていて長持ちしますから、緑青を帯びた歴 史ある風情を出しながら、メンテナンスフリーで葺き替えなど の手間や費用を省くことができます。

2012年のロンドンオリンピックでは、発色させたチタン合金 のモニュメントがメインスタジアムに設置されました。チタン プレートの発色加工をしたのは新潟の会社です。

若く、夢のある金属だから面白い

先生はチタン合金の話をしているときは、本当に楽しそう ですね。

チタンのとりこになる研究者は多いのですよ。チタン合金の ある現象が説明できたと思った途端に、全く説明できない現象 が現れたりする、どの材料でも同じだと思いますが、この懐の 深さが面白さの原点だと思います。

チタンは工業的に量産されるようになったのが1950年代とい う若い金属です。若い金属だからこそ、そこにはたくさん夢が 詰まっているはずです。若く、柔らかい思考の研究者にどんど ん参加してもらい、その夢を追ってほしいです。

チタンは比重が4.5と小さく、軽金属と言えるのに、融点は 鉄の1538℃を超える1668℃で、強度は鉄鋼並みです。という ことは、チタンを学ぶことで、実は軽金属という狭い領域だけ でなく、金属を学ぶことになります。チタンの専門家を目指さ なくても、チタンを理解することで別の金属への理解を深める ことができる、チタンはそういう面白い金属です。

――今後の抱負をお聞かせください。

私は30年ぐらいチタンの研究をしてきて、4年に1度開催さ れるチタン研究の世界会議にも大学院の2年次生からずっと参 加してきました。これだけ継続して参加している研究者は他に いないので、すっかり世界会議の生き字引のような存在になっ てしまいました。チタン研究において関西大学は、何代にもわ たる優れた先輩研究者に恵まれ、国内有数の歴史と実績のある 研究拠点になっています。次の世代にこの研究をどのようにつ ないで発展させていくかを、考えていきたいと思っています。