pdi-Bagging / pdi-Boosting

Isao Hayashi, Honoka Irie Kansai University, Graduate School of Informatics

Introduction

Introduction

- Professor, Faculty of Informatics Kansai University (Dr.Eng.)
 - Doctor's Degree, Graduate School of Engineering, Osaka
 Prefecture University
 - Sharp Corporation
 - Central Research Laboratories, Matsushita Electric Industrial (Panasonic) Co. Ltd.
 - Neuro-Fuzzy System
 - Visiting Professor, Department of Cognitive and Neural Systems, Boston University
 - Associate Dean, Graduate School of Informatics, Kansai University
 - President, Japan Society for Fuzzy Theory and Intelligent Informatics
 - Vice President, International Fuzzy Systems Association (IFSA)
 - General Manager, Table Tennis Club, Kansai University
 - Executive Board Member, Osaka Table Tennis Association
 - Japan Sport Association official table tennis senior instructor

Data Science in Our Laboratory

Principle of Data Science in Our Laboratory

We propose a model to be identified from observed data sets with high accuracy.

Not like that,

We propose a structure of data how to let model be highly accuracy.

Purpose of Data Science in Our Laboratory

- 1. We form the detected data distribution as knowledge.
- 2. We extract expert skill as knowledge.
- 3. We improve the skill of beginners by the comparison with the expert skill.

Methods of Data Science in Our Laboratory

To achieve our purpose,

- 1. Estimating degree of the existence of data.
- 2. Estimating location of the existence of data.
- 3. Estimating distribution of the existence of data.

Fuzzy Sets (Estimating degree of the existence of data.)

- Crisp Sets
 - Represents conventional sets.
 - In the case of a set of "Young", the value is 1.0 if you are satisfied with the "Young" between the ages of 18 and 25, and 0.0 if you are not satisfied.
 - However, the value of the "Young" is 1.0 when 18 years and 1 day, but the value of "Young" is 0.0 when 17 years, 11 months, 30 days, 23 hours, 59 minutes, and 59 seconds. → It is not common sense.

• Fuzzy Sets

- The fuzzy set "*Young*" is figured with membership function.
- The degree of "Young" is expressed as membership value in [0, 1] interval.

Estimating location of the existence of data.

Estimating distribution of the existence of data.

Data and Our Model

Input-Output Data

• Deviation γ depends on the modification of model M and the generation of virtual data v. $\gamma = modify(M, v)$

Our model Using Fuzzy Inference

Fuzzy Clustering Using Fuzzy Inference

Fuzzy Inference

- Fuzzy inference is a method that realizes "approximate inference that allows ambiguity" based on fuzzy logic, and is also called approximate reasoning.
- The properties of fuzzy inference are summarized in the following three items, where, A and τ are fuzzy sets.
 - Fuzzy Proposition : *X* is *A* (ex. : John is YOUNG)
 - Linguistic Truth Value : $Truth(X \text{ is } A) = \tau$ (Almost TRUE)
 - Approximate reasoning is performed, allowing approximate validity of the inference rules.

Fuzzy Clustering (Hazard recognition in automated driving)

Estimated Output (52.3) > θ (Risk Threshold 50.0) \rightarrow Danger

pdi-Bagging / pdi-Boosting Using Fuzzy Clustering

Ensemble Learning (pdi-Bagging / pdi-Boosting)

- In pdi-Bagging / pdi-Boosting, instead of updating the weight of AdaBoost, virtual data is generated around misclassified data and added to the learning data of the next layer.
- The final output for the testing data is determined by majority decision rule using multiple weak classifiers.

pdi-Bagging/pdi-Boosting (pdi : possibility data interpolation)

The pdi-Bagging / pdi-Boosting can realize a deep inference using the multiple weak classifiers.

Generation of virtual data to add to learning data

The j-th Attribute

Numerical Example of pdi-Bagging / pdi-Boosting

- Number of Data : 200 (Learning Data : 100, Testing Data : 100)
- Classes : 2 (2 inputs and 1 output)
- Membership Function : five
- Number of Rules : 25 (Total N. of Learning Coefficients : 225)
- Learning Coefficient $(K_b, K_\alpha, K_c, K_\beta)$: 0.01
- Learning Coefficient (K_p) : 0.4, 0.6
- Number of Learning :
 - 10 (Consequent Part)
 - 10, 20, 30

(Alternating Learning of Antecedent Part and Consequent Part)

- Trials : 10 (30 to 70 learning per trial)
- Weights of Evaluations for Changing Class : w₁=w₂=w₃=1/3
- N. of Layers for termination of algorithm : K=3

pdi-Bagging Using Fuzzy Clustering

1.0

0.8

0.6

0.4

0.2

Thank you for your attention!

ihaya@cbii.kutc.kansai-u.ac.jp