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Data Science in Our Laboratory




Principle of Data Science in Our Laboratory

We propose a model to be identified from
observed data sets with high accuracy.

Not like that,

We propose a structure of data how to let
model be highly accuracy.



Purpose of Data Science in Our Laboratory

1. We form the detected data distribution as
knowledge.

2. We extract expert skill as knowledge.

3. We improve the skill of beginners by the
comparison with the expert skill.



Methods of Data Science in Our Laboratory

To achieve our purpose,
1. Estimating degree of the existence of data.
2. Estimating location of the existence of data.

3. Estimating distribution of the existence of
data.



Fuzzy Sets (Estimating degree of the existence of data.)
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e Crisp Sets
o Represents conventional sets.

o Inthe case of a set of “Young”, the value is 1.0 if you are satisfied with
the “Young” between the ages of 18 and 25, and 0.0 if you are not
satisfied.

o However, the value of the “Young” is 1.0 when 18 years and 1 day, but
the value of “Young” is 0.0 when 17 years, 11 months, 30 days, 23
hours, 59 minutes, and 59 seconds. — It is not common sense.

o Fuzzy Sets
o The fuzzy set “Young’ is figured with membership function.

o The degree of “Young” is expressed as membership value in [0, 1]
interval.




Estimating location of the existence of data.
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Estimating distribution of the existence of data.
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Our model
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Data and Our Model
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Deviation y depends on the modification of model M and
the generation of virtual data v.

Yy = modify(M, v)



Our model Using Fuzzy Inference
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Fuzzy Clustering Using Fuzzy Inference




Fuzzy Clustering Using Fuzzy Inference




Fuzzy Inference

Fuzzy inference is a method that realizes "approximate
inference that allows ambiguity" based on fuzzy logic, and is
also called approximate reasoning.

The properties of fuzzy inference are summarized in the

following three items, where, A and t are fuzzy sets.

o Fuzzy Proposition : X is A (ex. : John is YOUNG)

o Linguistic Truth Value : Truth(X is A) = t (Almost TRUE)

o Approximate reasoning is performed, allowing
approximate validity of the inference rules.

Membership

Value 4 Fuzzy Proposition

1




Fuzzy Clustering (Hazard recognition in automated driving)

If Velocity is Fast and Approach Distance is Small then Degree of Risk t; =62 X1 : Velocity
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Estimated Output (52.3) > 0 (Risk Threshold 50.0) - Danger



pdi-Bagging / pdi-Boosting
Using Fuzzy Clustering




Ensemble Learning (pdi-Baqgaging / pdi-Boostinq)

In pdi-Bagging / pdi-Boosting, instead of updating the weight of AdaBoost,

virtual data is generated around misclassified data and added to the
learning data of the next layer.

using multiple weak classifiers.
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pdi-Bagging/pdi-Boosting (pdi : possibility data interpolation)

The pdi-Bagging / pdi-Boosting can realize a deep inference using the multiple
weak classifiers.
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Generation of virtual data to add to learning data

The k-th Attribute

- Membership Function
- Normal Distribution ,
- Uniform Distribution )

Region of Virtual Data /!
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Numerical Example of pdi-Bagqging / pdi-Boosting

Number of Data : 200 (Learning Data : 100, Testing Data : 100)

Classes : 2 (2 inputs and 1 output)

Membership Function : five

Number of Rules : 25 (Total N. of Learning Coefficients : 225)

Learning Coefficient (K, K4, K¢, Kg) : 0.01
Learning Coefficient (K,,) : 0.4, 0.6

Number of Learning :
10 (Consequent Part)
10, 20, 30

(Alternating Learning of Antecedent Part °¢

and Consequent Part )

Trials : 10 (30 to 70 learning per trial)
Weights of Evaluations for Changing Class :

W{=W>o=W3=1/3

N. of Layers for termination of algorithm : K=3

10



pdi-Baqqging Using Fuzzy Clustering

Learning Data
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Thank you for your attention!

ihaya@chbii.kutc.kansai-u.ac.jp





